Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Свойства умножения вектора на число.



Билет 1.

Определение 1. Величина, полностью характеризуемая своим числовым значением в выбранной системе единиц, называется скалярной или скаляром.

Определение 2. Величина, характеризуемая числовым значением и направлением, называется векторнойили вектором.

Обозначения: , или , .

Геометрический вектор – это направленный отрезок.

Для вектора – точка А – начало, точка В – конец вектора.

Определение 3. Модуль вектора – это длина отрезка AB.

Определение 4. Вектор, модуль которого равен нулю, называется нулевым, обозначается .

Определение 5. Векторы, расположенные на параллельных прямых или на одной прямой называются коллинеарными. Если два коллинеарных вектора имеют одинаковое направление, то они называются сонаправленными.

Определение 6. Два вектора считаются равными, если они сонаправлены и равны по модулю.

Действия над векторами.

Сложение векторов.

Опр. 6. Суммой двух векторов и является диагональ параллелограмма, построенного на этих векторах, исходящая из общей точки их приложения (правило параллелограмма).

Рис.1.

Опр. 7. Суммойтрех векторов , , называется диагональ параллелепипеда, построенного на этих векторах (правило параллелепипеда).

Опр. 8. Если А, В, С – произвольные точки, то + = (правило треугольника).

Свойства сложения.

1о. + = + (переместительный закон).

2о. + ( + ) = ( + ) + = ( + ) + (сочетательный закон).

3о. + (– ) + .

Вычитание векторов.

Опр. 9. Под разностью векторов и понимают вектор = такой, что + = .

В параллелограмме – это другая диагональ СД (см.рис.1).

Умножение вектора на число.

Опр. 10. Произведением вектора на скаляр k называется вектор

= k = k,

Свойства умножения вектора на число.

1о. (k + l) = k + l .

k( + ) = k + k .

2o. k(l ) = (kl) .

3o. = , (–1) × = – , 0 × = .

Свойства векторов.

Опр. 11. Два вектора и называются коллинеарными, если они расположены на параллельных прямыхили на одной прямой.

Нулевой вектор коллинеарен любому вектору.

КООРДИНАТЫ ВЕКТОРА

Опр. 13. Проекции вектора на координатные оси Ох, Оу, Оz называются координатами вектора. Обозначение: {ax, ay, az}.

Длина вектора:

Расстояние между точками и вычисляется по формуле: .

Действия над векторами в координатной форме.

Даны векторы ={ax, ay, az} и ={bx, by, bz}.

1. ( ± )={ax ± bx, ay ± by, az ± bz}.

2. l ={lax, lay, laz}, где l – скаляр.

 

Билет 2.

Скалярным произведением векторов и называется произведение их длин на косинус угла между ними:

Совершенно аналогично, как в планиметрии, доказываются следующие утверждения:

  • Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны.
  • Скалярный квадрат вектора, то есть скалярное произведение его самого на себя, равно квадрату его длины.
  • Скалярное произведение двух векторов и заданных своими координатами, может быть вычислено по формуле

Перечислим основные свойства скалярного произведения, которые также доказываются аналогично планиметрическим.

Для любых векторов и и любого числа λ справедливы равенства:

1. причем

2. (переместительный закон).

3. (распределительный закон).

4. (сочетательный закон).

Углом между ненулевыми векторами называется угол между прямыми, для которых данные вектора являются направляющими. Угол между любым вектором и нулевым вектором по определению считаем равным нулю. Если угол между векторами равен 90°, то такие вектора называются перпендикулярными.

Билет 3. То же что и в первом, выделено ручкой что оттуда.

Билет 4.

Теорема Байеса, Формула Байеса — одна из основных теорем элементарной теории вероятностей, которая позволяет определить вероятность того, что произошло какое-либо событие (гипотеза) при наличии лишь косвенных тому подтверждений (данных), которые могут быть неточны. Названа в честь ее автора, преп. Томаса Байеса.Полученную по формуле вероятность можно далее уточнять, принимая во внимание данные новых наблюдений.

Пусть — полная группа событий, и — некоторое событие, вероятность которого положительна. Тогда условная вероятность того, что имело место событие , если в результате эксперимента наблюдалось событие , может быть вычислена по формуле:

Билет 5.

Метод Крамера (правило Крамера) — способ решения квадратных систем линейных алгебраических уравнений с ненулевымопределителем основной матрицы (причём для таких уравнений решение существует и единственно). Назван по имени Габриэля Крамера (1704–1752), придумавшего метод.

Для системы n линейных уравнений с n неизвестными (над произвольным полем)

с определителем матрицы системы Δ, отличным от нуля, решение записывается в виде

(i-ый столбец матрицы системы заменяется столбцом свободных членов).
В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:

В этой форме формула Крамера справедлива без предположения, что Δ отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца (определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы b1, b2,..., bn и x1, x2,..., xn, либо набор c1, c2,..., cn состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом.

 

Билет 6.

Если производится некоторое количество испытаний, в результате которых может произойти или не произойти событие А, и вероятность появления этого события в каждом из испытаний не зависит от результатов остальных испытаний, то такие испытания называются независимыми относительно события А. Допустим, что событие А наступает в каждом испытании с вероятностью Р(А)=р. Определим вероятность Рт, п того, что в результате п испытаний событие А наступило ровно т раз.Эту вероятность в принципе можно посчитать, используя теоремы сложения и умножения вероятностей, как это делалось в рассмотренных выше примерах. Однако, при достаточно большом количестве испытаний это приводит к очень большим вычислениям. Таким образом, возникает необходимость разработать общий подход к решению поставленной задачи. Этот подход реализован в формуле Бернулли. (Якоб Бернулли (1654 – 1705) – швейцарский математик).Пусть в результате п независимых испытаний, проведенных в одинаковых условиях, событие А наступает с вероятностью Р(А) = р, а противоположное ему событие с вероятностью.Обозначим Ai – наступление события А в испытании с номером i. Т.к. условия проведения опытов одинаковые, то эти вероятности равны.Если в результате п опытов событие А наступает ровно т раз, то остальные п-т раз это событие не наступает. Событие А может появиться т раз в п испытаниях в различных комбинациях, число которых равно количеству сочетаний из п элементов по т

pn(k)=Сknpkqnk ( формула, схема Бернулли )

Билет 7

Локальная теорема Муавра — Лапласа. Если в схеме Бернулли число n велико, а число p отлично от 0 и 1, тогда:

Функция φ (x) называется функцией Гаусса. Ее значения давно вычислены и занесены в таблицу, которой можно пользоваться даже на контрольных работах и экзаменах.

Функция Гаусса обладает двумя свойствами, которые следует учитывать при работе с таблицей значений:

1. φ (− x) = φ (x) — функция Гаусса — четная;

2. При больших значениях x имеем: φ (x) ≈ 0.

Локальная теорема Муавра — Лапласа дает отличное приближение формулы Бернулли, если число испытаний n достаточно велико. Разумеется, формулировка «число испытаний достаточно велико» весьма условна, и в разных источниках называются разные цифры. Например:

1. Часто встречается требование: n · p · q > 10. Пожалуй, это минимальная граница;

2. Другие предлагают работать по этой формуле только для n > 100 и n · p · q > 20.

На мой взгляд, достаточно просто взглянуть на условие задачи. Если видно, что стандартная теорема Бернулли не работает из-за большого объема вычислений (например, никто не будет считать число 58! или 45! ), смело применяйте Локальную теорему Муавра — Лапласа.

Билет 8.

Если вероятность наступления события в каждом испытании постоянна и мала, а число независимых испытаний достаточно велико, то вероятность наступления события ровно раз приближенно равна

, (3.4)

где .

Доказательство. Пусть даны вероятность наступления события в одном испытании и число независимых испытаний . Обозначим . Откуда . Подставим это выражение в формулу Бернулли:

При достаточно большом!! n,, и сравнительно небольшом!! m,, все скобки, за исключением предпоследней, можно принять равными единице, т.е.

Учитывая то, что достаточно велико, правую часть этого выражения можно рассмотреть при , т.е. найти предел

Тогда получим

Билет 9

Случайной называется величина, которая при испытаниях принимает одно из возможное значений, наперед неизвестно какое. Неопределенность связана с действием случайных причин, которые не могут быть учтены заранее.

На конкретных примерах можно выделить две группы случайных величин:

Билет 10

Математическим ожиданием дискретной случайной величины Х, принимающей конечное число значений хi с вероятностями рi, называется сумма:

 

М ( Х ) = х1 · р1 + х2 · р2 + х3 · р3 +... + хn· рn.

 

Свойства математического ожидания:

 

1) М ( с · Х ) = с · М ( Х ), c R,

 

2) М ( Х + Y ) = М ( Х ) + М ( Y ), Х, Y Е,

 

3) М ( Х · Y ) = М ( Х ) · М ( Y ) для независимых случайных величин Х и Y.

 

Дисперсией случайной величины Х называется число:

 

D ( Х ) = М{ [ ХМ ( Х )] 2 }= М ( Х 2 ) – [М ( Х )] 2.

 

Свойства дисперсии:

1) D ( с · Х ) = с 2 · D ( Х ), c R,

 

2) D ( Х + Y ) = D ( Х ) + D ( Y ) для независимых случайных величин Х и Y.

 

Среднее квадратичное отклонение:

 

Билет 11 Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями. Закон распределения может иметь разные формы.

Рядом распределения дискретной случайной величины Х называется таблица, где перечислены возможные (различные) значения этой случайной величины х1, х2, ..., хn с соответствующими им вероятностями р1, р2, ..., рn:

хi x1 x2 ... xn
         
pi p1 p2   pn
         
         

Связь числовых характеристик
и параметров типичных распределений

распределение параметры формула Mx Dx
равномерное a, b (b+a) / 2 (b-a)2 / 12
нормальное a, σ a σ 2
Бернулли n, p np npq
Пуассона a a a

Билет 12.

Асимптота, так называемая прямая или кривая линия, которая, будучи продолжена, приближается к другой кривой, но никогда не пересекает ее, так что расстояние между ними делается бесконечно малой величиной.

Понятие асимптоты играет важную роль в математическом анализе. Они проводятся при изучении свойств многих кривых (гиперболы, конхоиды, логарифмич. линии, циссоиды и др.).

Укажем теперь общий метод отыскания асимптоты, то есть способ определения коэффициентов k и l в уравнении y = kx + l.

Будем рассматривать для определённости лишь случай х ® + ¥ (при х ® - ¥ рассуждения проводятся аналогично). Пусть график функции f имеет асимптоту y = kx + l при х ® + ¥. Тогда, по определению,

f (x) = kx + l + 0

Разделим обе части равенства f (x) = kx + l + 0 на х и перейдём к пределу при х ® + ¥. Тогда

lim = k.

х ® + ¥

Используя найденное значение k, получим из f (x) = kx + l + 0 для определения l формулу

l = lim (f (x) – kx).

х ® + ¥

Справедливо и обратное утверждение: если существуют такие числа k и l, что выполняется условие l = lim (f (x) – kx), то прямая y = kx + l является

х ® + ¥

асимптотой графика функции f (x). В самом деле, из l = lim (f (x) – kx) имеем

х ® + ¥

lim [f (x) - (kx + l)] = 0,

х ® + ¥

 

то есть прямая y = kx + l действительно удовлетворяет определению асимптоты, иначе говоря, выполняется условие f (x) = kx + l + 0. Таким образом, формулы lim = k. и l = lim (f (x) – kx)

х ® + ¥ х ® + ¥

сводят задачу отыскания асимптот y = kx + l к вычислению пределов определённого вида. Более того, мы показали, что если существует

 

 

представление функции f в виде f (x) = kx + l + 0, то k и l выражаются по формулам lim = k. и l = lim (f (x) – kx)

х ® + ¥ х ® + ¥

Следовательно, если существует представление y = kx + l, то оно единственно.

Найдём по этому правилу асимптоту графика функции f (x) = ,

найденную нами выше другим способом:

 

 

то есть мы, как и следовало ожидать, получили тоже уравнение асимптоты

y = x – 4, как при х ® + ¥, так и при х ® - ¥.

В виде y = kx + l может быть записано уравнение любой прямой, непараллельной оси Oy. Естественно распространить определение асимптоты и на прямые, параллельные оси Oy.

Бывают горизонтальные, вертикальные и наклонные асимптоты.

Билет 13.

Функция распределения случайной величины. Её свойства

Каждая случайная величина полностью определяется своей функцией распределения.

Если x.- случайная величина, то функция F(x) = Fx (x) = P(x < x) называется функцией распределения случайной величины x. Здесь P(x < x) - вероятность того, что случайная величина x принимает значение, меньшее x.

Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют простораспределением.

Функция распределения любой случайной величины обладает следующими свойствами:

· F(x)определена на всей числовой прямой R;

· F(x)не убывает, т.е. если x1x2, то F(x1) F(x2);

· F(- )=0, F(+ )=1, т.е. и ;

· F(x) непрерывна справа, т.е.

.

Функция распределения дискретной случайной величины

Если x - дискретная случайная величина, принимающая значения x1 < x2 < … < xi < … с вероятностями p1 < p2 < … < pi < …, то таблица вида

x1 x2 xi
p1 p2 pi

называется распределением дискретной случайной величины.

Функция распределения случайной величины, с таким распределением, имеет вид

У дискретной случайной величины функция распределения ступенчатая. Например, для случайного числа очков, выпавших при одном бросании игральной кости, распределение, функция распределения и график функции распределения имеют вид:

1/6 1/6 1/6 1/6 1/6 1/6

Функция распределения и плотность вероятности непрерывной случайной величины

Если функция распределения Fx (x) непрерывна, то случайная величина x называетсянепрерывной случайной величиной.

Если функция распределения непрерывной случайной величины дифференцируема, то более наглядное представление о случайной величине дает плотность вероятности случайной величины px (x), которая связана с функцией распределения Fx (x) формулами

и .

Отсюда, в частности, следует, что для любой случайной величины .

Билет 14.

Функция распределения случайной величины. Её свойства

Каждая случайная величина полностью определяется своей функцией распределения.

Если x.- случайная величина, то функция F(x) = Fx (x) = P(x < x) называется функцией распределения случайной величины x. Здесь P(x < x) - вероятность того, что случайная величина x принимает значение, меньшее x.

Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют простораспределением.

Функция распределения любой случайной величины обладает следующими свойствами:

· F(x)определена на всей числовой прямой R;

· F(x)не убывает, т.е. если x1x2, то F(x1) F(x2);

· F(- )=0, F(+ )=1, т.е. и ;

· F(x) непрерывна справа, т.е.

Дифференциальной функцией распределения f(x, у) двумерной непрерывной случайной величины (X, Y) называют вторую смешанную частную производную от интегральной функции:

Зная дифференциальную функцию f(x, у), можно найти интегральную функцию F(x, у) по формуле

Вероятность попадания случайной величины в область вычисляется по формуле

Свойство 1. Дифференциальная функция неотрицательна:

F(x, у)> =0.

Свойство 2. Двойной несобственный интеграл с бесконечными пределами от дифференциальной функции равен единице:

 

БИЛЕТ 15

Производной функции f ( x ) в точке x 0 называется предел отношения приращения функции Δ f в этой точке к приращению аргумента Δ х , когда последнее стремится к нулю (бесконечно мало). Нахождение производной называется дифференцированием . Вводится определение дифференцируемой функции: Функцияf, имеющая производную в каждой точке некоторого промежутка, называется дифференцируемой на данном промежутке. Физический смысл производной x`(t) от непрерывной функции x(t) в точке t0– есть мгновенная скорость изменения величины функции, при условии, что изменение аргумента Δ t стремится к нулю. Таким образом, мгновенная скорость (величина пути, пройденного за мгновение) и есть производная величина от функции, описывающей путь самолёта по времени. Мгновенная скорость - это и есть физический смысл производной. Аналогично, ускорение – это производная скорости по времени: a = v’ ( t ).

Правила дифференцирования.

Если у функций f(x) и g(x) существуют производные, то

Производная сложной функции:

Геометрический смысл производной. Производная в точке x0 равна угловому коэффициенту касательной к графику функции y=f(x) в этой точке

Уравнение касательной к графику функции y=f(x) в точке x0:

Билет 16

Таблица производных

Билет 18.

Пусть функция y = f(x) имеет производную в точке х:

Тогда можно записать: , где a®0, при Dх®0.

Следовательно: .

Величина aDx- бесконечно малая более высокого порядка, чем f¢ (x)Dx, т.е. f¢ (x)Dx- главная часть приращения Dу.

 

Определение. Дифференциалом функции f(x) в точке х называется главня линейная часть приращения функции.

Обозначается dy или df(x).

Из определения следует, что dy = f¢ (x)Dx или

 

dy = f¢ (x)dx.

Можно также записать:

Свойства дифференциала.

Если u = f(x) и v = g(x)- функции, дифференцируемые в точке х, то непосредственно из определения дифференциала следуют следующие свойства:

 

1) d(u ± v) = (u ± v)¢ dx = u¢ dx ± v¢ dx = du ± dv

 

2) d(uv) = (uv)¢ dx = (u¢ v + v¢ u)dx = vdu + udv

3) d(Cu) = Cdu

 

4)

Дифференциал сложной функции. Инвариантная форма записи дифференциала.

Пусть y = f(x), x = g(t), т.е у- сложная функция.

Тогда dy = f¢ (x)g¢ (t)dt = f¢ (x)dx.

Видно, что форма записи дифференциала dy не зависит от того, будет ли х независимой переменной или функцией какой- то другой переменной, в связи с чем эта форма записи называется инвариантной формой записи дифференциала.

Однако, если х- независимая переменная, то

dx = Dx, но

если х зависит от t, то Dх ¹ dx.

Билет 19.

Если функция f ( x )дифференцируема в некоторой точке, то она непрерывна в этой точке. Обратное неверно: непрерывная функция может не иметь производной.

Достаточные признаки монотонности функции.

Если f ’( x ) > 0 в каждой точке интервала ( a, b ), то функция f ( x ) возрастает на этом интервале.

Если f ’( x ) < 0 в каждой точке интервала ( a, b ), то функция f ( x ) убывает на этом интервале.

Теорема Дарбу. Точки, в которых производная функции равна 0 или не существует, делят область определения функции на интервалы, внутри которых производная сохраняет знак.

Используя эти интервалы, можно найти интервалы монотонности функций, что очень важно при их исследовании.

Критические точки. Внутренние точки области определения функции, в которых производная равна нулю или не существует, называются критическими точками этой функции. Эти точки очень важны при анализе функции и построении её графика, потому что только в этих точках функция может иметь экстремум

Необходимое условие экстремума. Если x0 - точка экстремума функции f ( x ) и производная f’ существует в этой точке, то f’ ( x0) = 0.

 

Формула Ньютона-Лейбница

Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Если F (x) - первообразная функции f (x) на[a, b], то

Билет 1.

Определение 1. Величина, полностью характеризуемая своим числовым значением в выбранной системе единиц, называется скалярной или скаляром.

Определение 2. Величина, характеризуемая числовым значением и направлением, называется векторнойили вектором.

Обозначения: , или , .

Геометрический вектор – это направленный отрезок.

Для вектора – точка А – начало, точка В – конец вектора.

Определение 3. Модуль вектора – это длина отрезка AB.

Определение 4. Вектор, модуль которого равен нулю, называется нулевым, обозначается .

Определение 5. Векторы, расположенные на параллельных прямых или на одной прямой называются коллинеарными. Если два коллинеарных вектора имеют одинаковое направление, то они называются сонаправленными.

Определение 6. Два вектора считаются равными, если они сонаправлены и равны по модулю.

Действия над векторами.

Сложение векторов.

Опр. 6. Суммой двух векторов и является диагональ параллелограмма, построенного на этих векторах, исходящая из общей точки их приложения (правило параллелограмма).

Рис.1.

Опр. 7. Суммойтрех векторов , , называется диагональ параллелепипеда, построенного на этих векторах (правило параллелепипеда).

Опр. 8. Если А, В, С – произвольные точки, то + = (правило треугольника).

Свойства сложения.

1о. + = + (переместительный закон).

2о. + ( + ) = ( + ) + = ( + ) + (сочетательный закон).


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 617; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.203 с.)
Главная | Случайная страница | Обратная связь