Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Действия над векторами в координатной форме.
Даны векторы ={ax, ay, az} и ={bx, by, bz}. 1. ( ± )={ax ± bx, ay ± by, az ± bz}. 2. l ={lax, lay, laz}, где l – скаляр.
Билет 2. Скалярным произведением векторов и называется произведение их длин на косинус угла между ними: Совершенно аналогично, как в планиметрии, доказываются следующие утверждения:
Перечислим основные свойства скалярного произведения, которые также доказываются аналогично планиметрическим. Для любых векторов и и любого числа λ справедливы равенства: 1. причем 2. (переместительный закон). 3. (распределительный закон). 4. (сочетательный закон). Углом между ненулевыми векторами называется угол между прямыми, для которых данные вектора являются направляющими. Угол между любым вектором и нулевым вектором по определению считаем равным нулю. Если угол между векторами равен 90°, то такие вектора называются перпендикулярными. Билет 3. То же что и в первом, выделено ручкой что оттуда. Билет 4. Теорема Байеса, Формула Байеса — одна из основных теорем элементарной теории вероятностей, которая позволяет определить вероятность того, что произошло какое-либо событие (гипотеза) при наличии лишь косвенных тому подтверждений (данных), которые могут быть неточны. Названа в честь ее автора, преп. Томаса Байеса.Полученную по формуле вероятность можно далее уточнять, принимая во внимание данные новых наблюдений. Пусть — полная группа событий, и — некоторое событие, вероятность которого положительна. Тогда условная вероятность того, что имело место событие , если в результате эксперимента наблюдалось событие , может быть вычислена по формуле: Билет 5. Метод Крамера (правило Крамера) — способ решения квадратных систем линейных алгебраических уравнений с ненулевымопределителем основной матрицы (причём для таких уравнений решение существует и единственно). Назван по имени Габриэля Крамера (1704–1752), придумавшего метод. Для системы n линейных уравнений с n неизвестными (над произвольным полем) с определителем матрицы системы Δ, отличным от нуля, решение записывается в виде (i-ый столбец матрицы системы заменяется столбцом свободных членов). В этой форме формула Крамера справедлива без предположения, что Δ отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца (определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы b1, b2,..., bn и x1, x2,..., xn, либо набор c1, c2,..., cn состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом.
Билет 6. Если производится некоторое количество испытаний, в результате которых может произойти или не произойти событие А, и вероятность появления этого события в каждом из испытаний не зависит от результатов остальных испытаний, то такие испытания называются независимыми относительно события А. Допустим, что событие А наступает в каждом испытании с вероятностью Р(А)=р. Определим вероятность Рт, п того, что в результате п испытаний событие А наступило ровно т раз.Эту вероятность в принципе можно посчитать, используя теоремы сложения и умножения вероятностей, как это делалось в рассмотренных выше примерах. Однако, при достаточно большом количестве испытаний это приводит к очень большим вычислениям. Таким образом, возникает необходимость разработать общий подход к решению поставленной задачи. Этот подход реализован в формуле Бернулли. (Якоб Бернулли (1654 – 1705) – швейцарский математик).Пусть в результате п независимых испытаний, проведенных в одинаковых условиях, событие А наступает с вероятностью Р(А) = р, а противоположное ему событие с вероятностью.Обозначим Ai – наступление события А в испытании с номером i. Т.к. условия проведения опытов одинаковые, то эти вероятности равны.Если в результате п опытов событие А наступает ровно т раз, то остальные п-т раз это событие не наступает. Событие А может появиться т раз в п испытаниях в различных комбинациях, число которых равно количеству сочетаний из п элементов по т pn(k)=Сknpkqn− k ( формула, схема Бернулли ) Билет 7 Локальная теорема Муавра — Лапласа. Если в схеме Бернулли число n велико, а число p отлично от 0 и 1, тогда: Функция φ (x) называется функцией Гаусса. Ее значения давно вычислены и занесены в таблицу, которой можно пользоваться даже на контрольных работах и экзаменах. Функция Гаусса обладает двумя свойствами, которые следует учитывать при работе с таблицей значений: 1. φ (− x) = φ (x) — функция Гаусса — четная; 2. При больших значениях x имеем: φ (x) ≈ 0. Локальная теорема Муавра — Лапласа дает отличное приближение формулы Бернулли, если число испытаний n достаточно велико. Разумеется, формулировка «число испытаний достаточно велико» весьма условна, и в разных источниках называются разные цифры. Например: 1. Часто встречается требование: n · p · q > 10. Пожалуй, это минимальная граница; 2. Другие предлагают работать по этой формуле только для n > 100 и n · p · q > 20. На мой взгляд, достаточно просто взглянуть на условие задачи. Если видно, что стандартная теорема Бернулли не работает из-за большого объема вычислений (например, никто не будет считать число 58! или 45! ), смело применяйте Локальную теорему Муавра — Лапласа. Билет 8. Если вероятность наступления события в каждом испытании постоянна и мала, а число независимых испытаний достаточно велико, то вероятность наступления события ровно раз приближенно равна , (3.4) где . Доказательство. Пусть даны вероятность наступления события в одном испытании и число независимых испытаний . Обозначим . Откуда . Подставим это выражение в формулу Бернулли: При достаточно большом!! n,, и сравнительно небольшом!! m,, все скобки, за исключением предпоследней, можно принять равными единице, т.е. Учитывая то, что достаточно велико, правую часть этого выражения можно рассмотреть при , т.е. найти предел Тогда получим Билет 9
На конкретных примерах можно выделить две группы случайных величин: |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 553; Нарушение авторского права страницы