Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Основная формула комбинаторики ⇐ ПредыдущаяСтр 5 из 5
Пусть имеется k групп элементов, причем i-я группа состоит из ni элементов. Выберем по одному элементу из каждой группы. Тогда общее число N способов, которыми можно произвести такой выбор, определяется соотношением N=n1*n2*n3*...*nk. В том случае, когда все группы состоят из одинакового числа элементов, т.е. n1=n2=...nk=n можно считать, что каждый выбор производится из одной и той же группы, причем элемент после выбора снова возвращается в группу. Тогда число всех способов выбора равно nk.Такой способ выбора носит название выборки с возвращением. Определение 1. Размещением из n элементов по m называется любой упорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов. Число размещений обозначается Anm и вычисляется по формуле:
Определение 2. Сочетанием из n элементов по m называется любой неупорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов. Число сочетаний обозначается Cnm
Определение 3. Перестановкой из n элементов называется любой упорядоченный набор этих элементов. Число различных перестановок из n элементов обозначается Pn и вычисляется по формуле Pn=n!.
Билет 25
Суммой двух событий А и В называется событие С, состоящее в появлении хотя бы одного из событий А или В. Теорема сложения вероятностей Вероятность суммы двух несовместимых событий равна сумме вероятностей этих событий: Р (А + В) = Р (А) + Р (В). В случае, когда события А и В совместны, вер-ть их суммы выражается формулой Р (А +В) = Р (А) + Р (В) – Р (АВ), где АВ – произведение событий А и В. Два события называются зависимыми, если вероятность одного из них зависит от наступления или не наступления другого. в случае зависимых событий вводится понятие условной вероятности события. Условной вероятностью Р(А/В) события А называется вероятность события А, вычисленная при условии, что событие В произошло. Аналогично через Р(В/А) обозначается условная вероятность события В при условии, что событие А наступило. Произведением двух событий А и В называется событие С, состоящее в совместном появлении события А и события В. Теорема умножения вероятностей Вероятность произведения двух событий равна вер-ти одного из них, умноженной на условную вероятность другого при наличии первого: Р (АВ) = Р(А) · Р(В/А), или Р (АВ) = Р(В) · Р(А/В). Следствие. Вероятность совместного наступления двух независимых событий А и В равна произведению вероятностей этих событий: Р (АВ) = Р(А) · Р(В). Следствие. При производимых n одинаковых независимых испытаниях, в каждом из которых события А появляется с вероятностью р, вероятность появления события А хотя бы один раз равна 1 - (1 - р) БИЛЕТ 26 Функция F(x) называется первообразной функции f(x), если Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функцииf(x) и обозначается как Таким образом, если F - некоторая частная первообразная, то справедливо выражение где С - произвольная постоянная.
Свойства неопределенного интеграла В приведенных ниже формулах f и g - функции переменной x, F - первообразная функции f, · · · ·
БИЛЕТ 27 Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Определенный интеграл от функции f (x) в пределах от a до b вводится как предел суммы бесконечно большого числа слагаемых, каждое из которых стремится к нулю: где Свойства определенного интеграла Ниже предполагается, что f (x) и g (x) - непрерывные функции на замкнутом интервале [a, b]. 1.
2. где k - константа;
3.
4.
5. Если для всех , то .
6.
7.
8. Если в интервале [a, b], то
Формула Ньютона-Лейбница Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Если F (x) - первообразная функции f (x) на[a, b], то |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 351; Нарушение авторского права страницы