Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Физический смысл волновой функции



В координатном представлении волновая функция зависит от координат (или обобщённых координат) системы. Физический смысл приписывается квадрату её модуля , который интерпретируется как плотность вероятности (для дискретных спектров — просто вероятность) обнаружить систему в положении, описываемом координатами в момент времени :

.

Тогда в заданном квантовом состоянии системы, описываемом волновой функцией , можно рассчитать вероятность того, что частица будет обнаружена в любой области конфигурационного пространства конечного объема : .

Следует также отметить, что возможно измерение и разницы фаз волновой функции, например, в опыте Ааронова — Бома.

Уравне́ ние Шрёдингера — уравнение, описывающее изменение в пространстве (в общем случае, в конфигурационном пространстве) и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона в классической механике. Его можно назвать уравнением движения квантовой частицы. Установлено Эрвином Шрёдингером в 1926 году.

Уравнение Шрёдингера предназначено для частиц без спина, движущихся со скоростями много меньшими скорости света. В случае быстрых частиц и частиц со спином используются его обобщения (уравнение Клейна — Гордона, уравнение Паули, уравнение Дирака и др.)

В начале XX века учёные пришли к выводу, что между предсказаниями классической теории и экспериментальными данными об атомной структуре существует ряд расхождений. Открытие уравнения Шрёдингера последовало за революционным предположением де Бройля, что не только свету, но и вообще любым телам (в том числе и любым микрочастицам) присущи волновые свойства.

Исторически окончательной формулировке уравнения Шрёдингера предшествовал длительный период развития физики. Оно является одним из важнейших уравнений физики, объясняющих физические явления. Квантовая теория, однако, не требует полного отказа от законов Ньютона, а лишь определяет границы применимости классической физики. Следовательно, уравнение Шрёдингера должно согласовываться с законами Ньютона в предельном случае. Это подтверждается при более глубоком анализе теории: если размер и масса тела становятся макроскопическими и точность слежения за его координатой много хуже стандартного квантового предела, прогнозы квантовой и классическойтеорий совпадают, потому что неопределённый путь объекта становится близким к однозначной траектории.

Зависимое от времени уравнение

Наиболее общая форма уравнения Шрёдингера — это форма, включающая зависимость от времени[1]:

Зависимое от времени уравнение (общий случай)

Пример нерелятивистского уравнения Шрёдингера в координатном представлении для точечной частицы массы , движущейся в потенциальном поле c потенциалом :

Зависящее от времени уравнение Шрёдингера

Формулировка

Общий случай

В квантовой физике вводится комплекснозначная функция , описывающая чистое состояние объекта, которая называется волновой функцией. В наиболее распространенной копенгагенской интерпретации эта функция связана с вероятностью обнаружения объекта в одном из чистых состояний (квадрат модуля волновой функции представляет собой плотность вероятности). Поведение гамильтоновой системы в чистом состоянии полностью описывается с помощью волновой функции.

Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения в частных физических задачах. Таким уравнением является уравнение Шрёдингера.

Пусть волновая функция задана в n-мерном конфигурационном пространстве, тогда в каждой точке с координатами , в определенный момент времени t она будет иметь вид . В таком случае уравнение Шрёдингера запишется в виде:

где , — постоянная Планка; — масса частицы, — внешняя по отношению к частице потенциальная энергия в точке в момент времени , — оператор Лапласа (или лапласиан), эквивалентен квадрату оператора набла и в n-мерной системе координат имеет вид:

 

 

30 вопрос Фундаментальные физические взаимодействия. Понятие физического вакуума в современной научной картине мира.

Взаимодействие. Все многообразие взаимодействий подразделяется в современной физической картине мира на 4 типа: сильное, электромагнитное, слабое и гравитационное. По современным представлениям все взаимодействия имеют обменную природу, т.е. реализуются в результате обмена фундаментальными частицами – переносчиками взаимодействий. Каждое из взаимодействий характеризуется так называемой константой взаимодействия, которое определяет его сравнительную интенсивность, временем протекания и радиусом действия. Рассмотрим кратко эти взаимодействия.

1. Сильное взаимодействие обеспечивает связь нуклонов в ядре. Константа взаимодействия равна приблизительно 100, радиус действия порядка

10-15, время протекания t »10-23с. Частицы – переносчики - p-мезоны.

2. Электромагнитное взаимодействие: константа порядка 10-2, радиус взаимодействия не ограничен, время взаимодействия t » 10-20с. Оно реализуется между всеми заряженными частицами. Частица – переносчик – фотон.

3. Слабое взаимодействие связано со всеми видами b-распада, многие распады элементарных частиц и взаимодействие нейтрино с веществом. Константа взаимодействия порядка 10-13, t » 10-10с. Это взаимодействие, как и сильное, является короткодействующим: радиус взаимодействияr»10-18м. (Частица – переносчик - векторный бозон).

4. Гравитационное взаимодействие является универсальным, однако в микромире учитывается, так как его константа равна 10-38, т.е. из всех взаимодействий является самым слабым и проявляется только при наличии достаточно больших масс. Его радиус действия не ограничен, время также не ограничено. Обменный характер гравитационного взаимодействия до сих пор остается под вопросом, так как гипотетическая фундаментальная частица гравитон пока не обнаружена.

Физический вакуум

Под физическим вакуумом в квантовой физике понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. При этом такое состояние вовсе не обязательно соответствует пустоте: поле в низшем состоянии может быть, например, полем квазичастиц в твёрдом теле или даже в ядре атома, где плотность чрезвычайно высока. Физическим вакуумом называют также полностью лишённое вещества пространство, заполненное полем в таком состоянии. Такое состояние не является абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами. В теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий). Вырождение вакуума приспонтанном нарушении симметрии приводит к существованию непрерывного спектра вакуумных состояний, отличающихся друг от друга числом голдстоуновских бозонов. Локальные минимумы энергии при разных значениях какого-либо поля, отличающиеся по энергии от глобального минимума, носят название ложных вакуумов; такие состояния метастабильны и стремятся распасться с выделением энергии, перейдя в истинный вакуум или в один из нижележащих ложных вакуумов.

Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира[1] и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (упомянутых выше ложных вакуумов) является одной из главных основ инфляционной теории Большого взрыва.

 

 

31 вопрос Структурные уровни материи. Микромир. Макромир. Мегамир.

Структурные уровни материи

(1) - Характерной чертой материи является ее структура, поэтому одной из важнейших задач естествознания является исследование этой структуры.

В настоящее время принято, что наиболее естественным и наглядным признаком структуры материи являются характерный размер объекта на данном уровне и его масса. В соответствии с этими представлениями выделяются следующие уровни:

Уровни Условные границы
  Размер, м Масса, кг
Микромир r< =10-8 m < = 1010
Макромир r » 10-8 - 107 m » 10-10 – 1020
Мегамир r > 107 m > 1020

 

(3) - Понятие «микромир» охватывает фундаментальные и элементарные частицы, ядра, атомы и молекулы. Макромир представлен макромолекулами, веществами в различных агрегатных состояниях, живыми организмами, начиная с элементарное единицей живого – клетки, человеком и продуктами его деятельности, т.е. макротелами. Наиболее крупные объекты (планеты, звезды, галактики и их скопления образуют мегамир. Важно сознавать, что жестких границ между этими мирами нет, а речь идет лишь о различных уровнях рассмотрения материи.

Для каждого из рассмотренных основных уровней, в свою очередь, можно выделить подуровни, характеризуемые свой структурой, своими особенностями организации.

Структурный уровень материи Подуровни
МИКРОМИР Физический уровень: субатомный уровень: кварки, лептоны ядерный уровень: нуклоны, ядра атомов Атомный уровень: атомы химических элементов Молекулярный уровень: молекулы веществ  
МАКРОМИР Макромолекулярный уровень: полимеры, комплексы молекул Физические тела
МЕГАМИР Уровень планет, геологических объектов Уровень планет, геологических объектов Уровень планет, геологических объектов Уровень Метагалактики

Изучение материи на ее различных структурных уровнях требует своих специфических средств и методов.

 

32 вопрос Эволюция Вселенной (Фридман, Хаббл, Гамов) и реликтовое излучение.


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 655; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь