Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


В чем состоит геометрический подход к определению вероятности? Как находится вероятность попадания в заданное множество, если точка случайно выбирается в круге радиуса r? в кубе со стороной a?



Геометрический подход заключается на предположении, что попадание каждой точки в геометрическом множестве( ), а в какое-то подмножество А .Вероятность Р(А) пропорциональна мере (длин, площади и т.д.) множества А, т.е. Р(А)= с (А), где (А)-мера множества А, а с=const. Т.к. P( )=1, то с = 1/ ( ), так что Р(А)= .

1) - круг с радиусом r; F – фигура ; (F)=площадь F

( )=площадь

P(F)=площадь F/площадь круга радиуса r 2) P(F)=объем F/ объем круга

 

25. Что такое полная группа событий? Приведите пример, когда события АВ, и не образуют полной группы событий.

Полная группа событий - это система случайных событий такая, что в результате произведённого случайного эксперимента непременно произойдёт одно из них.

АВ, А*В, А*+В* (чёрточка одна на А и В)-не образуют полной группы событий. А*+В*(чёрточка одна на А и В)=А*В*

Полную группу событий составляют: АВ, А*В, АВ*, А*В*

Сл-но АВ, А*В, А*В* - не образуют полной группы.

Пример: студент сдаёт 2 зачёта, соб.А- сдан 1 зачёт, соб.В- сдан 2 зачёт, Р(А)=1/2, Р(В)=2/3

Р(АВ+А*В+А*В*)≠ 1, т.к. Р(АВ*)≠ 0, сл-но соб. АВ, А*В, А*+В* (чёрточка одна на А и В)-не образуют полной группы.

 

26. Верно ли, что события образуют полную группу для любых событий А и В? Ответ обоснуйте.

Да, события образуют полную группу событий для любого А и В, т.к. они попарно несовместны и при каждом осуществлении опыта обязательно наступит хотя бы одно из них. (проиллюстрировать рисунком)


27. Событие A влечет событие B. Верно ли, что P(A) + P(AB) + P(B) =1? Дайте обоснованный ответ.

Если в каждом из n независимых испытаний вероятность р появления A const, то как угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности р по абс величине будет сколь угодно малым, если число испытаний достаточно велико. xi-число появлений событий в i-м испытании (i=1…n). Каждая из величин может принимать 2 значения: 1 с вер-ю р, 0 с вер q

xi- попарно независ., тогда D(xi)=pq. Т.к. p+q=1, то pq 1/4 дисперсии огранич с=1/4

Применим т. Чебышева, получим

Матем ожидание а каждой из величин xi = р наступл. событ.

Каждая xi при появлении события в соотв. испытании принимает значение = единице x1+x2+…+xn= m появлен. события в n испытаниях ( x1+x2+…+xn)/n= m/n.

Учитывая это, получим,


28. Сформулируйте и докажите формулу полной вероятности. Приведите пример ее применения.

Пусть событие А может наступить при условии появления одного из несовместных событий В1, В2, В3, …., Вn, которые образуют полную группу. Пусть известны вероятности этих событий и условные вероятности Р в2 (А), …., Рвn (А) события А. Найдем вероятность события А.

Вероятность события А, которое может наступить лишь при условии появления одного из несовместных событий В1, В2, …, Вn, образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:

Р(А) = Р(В1) Рв1(А) + Р(В2) Рв2(А) +….+ Р(Вn) Рвn(А).

Эта формула называется «формулой полной вероятности».

Докажем ее…

По условию, событие А может наступить, если наступит одно из несовместных событий В1, В2, …, Вn. Другими словами, появление события А означает осуществление одного, безразлично какого, из несовместных событий В1А, В2А, …, ВnА. Пользуясь для вычисления события А теоремой сложения, получаем Р(А) = Р(В1А) + Р(В2А) +….+ Р(ВnА) (1)

Остается вычислить каждое из слагаемых. По теореме умножения вероятностей зависимых событий имеем: Р(В1А) = Р(В1) Рв1(А); Р(В2) Рв2(А): …. Р(ВnА) = Р(Вn) Р( bn) (А)

Подставляем правые части этих равенств в соотношение (1) и получаем формулу полной вероятности: Р(А) = Р(В1) Рв1(А) + Р(В2)Рв2 (А) + ….+ Р(Вn) Рвn (А)

Приведем пример использования формулы полной вероятности:

Допустим, у нас есть два набора деталей. Вероятность того, что деталь первого набора стандартна, равна 0, 8, а второго – 0, 9. Найдем вероятность того, что взятая наудачу деталь (из наудачу взятого набора) – стандартная.

Пусть А событие «извлеченная деталь стандартна». Деталь может быть извлечена либо из первого набора (событие В1), либо из второго (В2). Вероятность того, что деталь вынута из первого набора, Р(В1) =1/2, вероятность, что деталь вынута из второго набора, Р(В2) = 1/ 2. Условная вероятность того, что из первого набора будет извлечена стандартная деталь, Рв1 (А) =0, 8, условная вероятность того, что из второго набора будет извлечена стандартная деталь Рв2(А) =0, 9.

Искомая вероятность того, что извлеченная наудачу деталь – стандартная, по формуле полной вероятности равна

Р(А) = Р(В1) Рв1(А) + Р(В2)Рв2 (А) = 0, 5*0, 8 + 0, 5*0, 9 = 0, 85.

Схема Бернулли

30. В чем состоит схема Бернулли? Запишите формулу для вероятности успехов в серии испытаний по схеме Бернулли и приведите пример ее применения.

Схема Бернулли: производится n независимых испытаний, в каждом из которых с одной и той же вероятностью p наступает некоторое событие А (называемое обычно «успехом») и, следовательно, с вероятностью q=1-p наступает событие , противоположное А.

Пусть k – любое из чисел 0, 1, 2, …, n. Обозначим вероятность того, что в n испытаниях Бернулли успехов наступит k раз. Справедлива формула Бернулли:

.

Пример: Монета бросается 10 раз. Какова вероятность того, что герб выпадает при этом ровно 3 раза?

Решение: В данном случае успехом считается выпадение герба, вероятность p этого события в каждом опыте равна ½ , так что q=1-p=1|2. Отсюда

.


 

33. Пусть – вероятность успехов в серии независимых испытаний с вероятностью успеха в каждом испытании. При каком вероятность достигает максимума? Совпадает ли это число с математическим ожиданием количества успехов? Чему равна сумма ?

Рассмотрим два соседних числа и . М ежду ними имеет место одно из соотношений: ( меньше, равно или больше) или, что эквивалентно, . Подставляя вместо числителя и знаменателя их выражения по формулам , или учитывая, что , получим соотношения или . Собирая все слагаемые с множителем k и учитывая, что p+q=1 , получим эквивалентные соотношения . Обозначим число np+p через . Тогда перепишется: .

Таким образом, для всех значений k меньших чем справедливо неравенство , для ( это возможно только в том случае, когда - целое число) имеет место равенство , наконец, при выполняется неравенство . Тем самым при значениях функция возрастает, а при значениях убывает. Следовательно, если число не является целым, то функция имеет единственный максимум; он достигается при ближайшем к слева целом значении k , т.е. при таком целом , которое заключено между -1 и : np-q< < np+p, =[np+p].

Если же - целое число, то два равных между собой максимума достигается при и .

Если число не является целым, то наиболее вероятное число успехов равно ближайшему к слева целому числу. В случае когда есть целое число, наиболее вероятное число успехов имеет два значения: -1 и . Сумму не знаю как посчитать.


 


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 381; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь