Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Основные характеристики портфеля ценных бумаг.



Портфель – это совокупность различных инвестиционных инструментов, которые собраны воедино для достижения конкретной инвестиционной цели вкладчика. В портфель могут входить бумаги только одного типа, например акции или облигации, или различные инвестиционные ценности, такие как акции, облигации, депозитные и сберегательные сертификаты и т. д.

Портфельный менеджмент, т. е. формирование инвестиционного портфеля ценных бумаг, берет свое начало примерно с тех времен, когда появились сами ценные бумаги. Методология же инвестиционного менеджмента начала складываться в двадцатые годы с появлением понятия < истинной> цены (fair price) акции. Задача инвестора состояла в том, чтобы приобрести недооцененные акции, чья рыночная цена на момент покупки ниже истинной, и избавиться от переоцененных бумаг и тем самым получить в перспективе максимальную прибыль. Эта цель не менее актуальна и сейчас.

Начало современной теории финансового портфеля было заложено в статье Гарри Марковица «Выбор портфеля» (1952). В этой статье была предложена математическая модель формирования оптимального портфеля ценных бумаг и были приведены методы построения таких портфелей при определенных условиях. С вычислительной точки зрения получающаяся оптимизационная задача относится к классу задач квадратической оптимизации при линейных огра­ничениях. К настоящему времени вместе с задачами линейного програм­мирования это один из наиболее изученных классов оптимизационных за­дач, для которых разработано большое число достаточно эффективных ал­горитмов.

затем в работах Вильяма Шарпа (1964) и Джона Литнера (1965), и было основано на понятиях систематического (рыночного) и несистематического рисков ценной бумаги.

Риск (в литературе также встречается термин общий риск) ценной бумаги есть неопределенность ее дохода в конце периода инвестирования. Риск измеряется дисперсией доходности ценной бумаги за фиксированный интервал времени, например, месяц, квартал, год и т. д. Данное определение риска является наиболее распространенным, хотя существуют и другие.

Главная цель в формировании портфеля состоит в достижении оптимального сочетания между риском и доходом для инвестора, т. е. соответствующий набор инвестиционных инструментов призван снизить до минимума риск его потерь и одновременно максимизировать его доход.

Для получения количественных характеристик инвестиционного портфеля могут использоваться следующие показатели:

1. mp- доходность портфеля ценных бумаг. Данный параметр рассчитывается как взвешенная средняя из ожидаемых доходов по каждому из компонентов

mp =S xi mi , (4. 1.)

где xi - доли инвестиций, помещенных в каждый из видов активов (эти доли называют портфельными весами) XT=(х1, х2, … хn);

m i - ожидаемая ставка дохода по каждому виду активов.

2. риск портфеля - sp - стандартное отклонение ставок дохода по портфелю. Стандартное отклонение дохода представляет собой квадратный корень из дисперсии[i] портфельного дохода (дисперсию доходности портфеля называют его вариацией Vp ), которая определяется по формуле:

s2p =V p = XT*COV*X , (4.2.)

где COV- ковариационная матрица[ii] порядка n.

ковариация - это статистическая мера взаимодействия двух случайных переменных, таких, например, как доходности двух ценных бумаг. Положительное значение ковариации показывает, что доходности этих ценных бумаг имеют тенденцию изменяться в одну сторону. Ковариация между двумя акциями x и y рассчитывается следующим образом:

(4.3)

Содержательно интерпретировать численное значение ковариации достаточно сложно, поэтому очень часто для измерения силы связи между двумя переменными используется другая статистическая характеристика, называемая коэффициентом корреляции [iii]. Этот коэффициент позволяет стандартизировать ковариацию путем деления ее на произведение соответствующих средних квадратических отклонений и привести величины к сопоставимому виду. Коэффициент корреляции между двумя переменными i и j рассчитывается следующим образом:

ri, j = COVi, j /si ´ sj, (4.4)

Знак коэффициента корреляции совпадает со знаком ковариации, поэтому положительная его величина означает однонаправленное изменение переменных, а отрицательная – их изменение в противоположных направлениях. Если значение ri, j близко к нулю, связь между переменными слабая. Кроме того, процедура стандартизации приводит к тому, что коэффициент корреляции принадлежит интервалу от – 1.0 до +1.0. Отметим также, что формула (4.4) может использоваться для расчета ковариации: Ковариация может быть выражена как произведение коэффициента корреляции ri, j и двух стандартных отклонений:

COVi, j = ri, j ´ si ´ sj,

si - стандартное отклонение дохода по i –ому активу,

 
 

rij – коэффициент корреляции доходов между i-м и j-м активом.

 

Наличие совершенной положительной корреляции (рис. 4.1. а) наблюдается, например, при приобретении двух видов обычных акций одной корпорации, выпущенных на одинаковых условиях. Это означает, что когда одна из двух ценных бумаг имеет относительно высокую доходность, тогда и другая ценная бумага имеет относительно высокую доходность. Стандартное отклонение ставок дохода по портфелю в этом случае рассчитывается как средневзвешенная из стандартных отклонений доходов, входящих в состав портфеля активов.

При наличии совершенной отрицательной корреляции (рис. 4.1. б), когда при уменьшении дохода по одной акции на один пункт происходит увеличение на один пункт по другой, инвестор получает возможность уменьшить стандартное отклонение дохода по этим двум активам вместе до нуля, т.е. свести риск к минимуму.

Рассмотрим портфель, состоящий из двух видов ценных бумаг: акций с ожидаемой доходностью 12% и облигаций, доход по которым равен 5.1%. Стандартное отклонение акций 21.2%, облигаций – 8.3%.

 

Варьируя портфельные веса включенных в состав портфеля активов, можно добиться оптимального портфеля, с точки зрения применяемого типа активов. Результат такого варьирования может быть представлен в таблице 4.1.

 

Таблица 4.1. Ожидаемый доход и стандартное отклонение портфеля

Порт фель Удельный вес актива в составе портфеля   Ожидае­мый до­ход Стандартное отклонение при корреляции:
Акции облигации r=-1.00 r=-0.7   r=0 r=0.18 г =1, 00
0.00 1.00 5.10 8.3 8.3 8.3 8.3 8.3
0.05 0.95 5.45 6.825 7.183 7.956 8.143 8.945
0.10 0.90 5.79 5.35 6.174 7.765 8.124 9.59
0.15 0.85 6.14 3.875 5.336 7.739 8.244 10.235
0.20 0.80 6.48 2.4 4.759 7.878 8.497 10.88
0.25 0.75 6.83 0.925 4.544 8.176 8.872 11.525
0.28 0.72 7.03 0.04     9.15 11.91
0.30 0.70 7.17 0.55 4.741 8.614 9.355 12.17
0.35 0.65 7.52 2.025 5.303 9.174 9.928 12.815
0.40 0.60 7.86 3.5 6.131 9.834 10.579 13.46
0.45 0.55 8.21 4.975 7.133 10.576 11.293 14.105
0.50 0.50 8.55 6.45 8.246 11.383 12.059 14.75
0.55 0.45 8.90 7.925 9.431 12.244 12.868 15.395
0.60 0.40 9.24. 9.4 10.663 13.146 13.712 16.04
0.65 0.35 9.59 10.875 11.928 14.083 14.586 16.685
0.70 0.30 9.93 12.35 13.217 15.047 15.483 17.33
0.75 0.25 10.28 13.825 14.523 16.035 16.401 17.975
0.80 0.20 10.62 15.3 15.842 17.041 17.336 18.62
0.85 0.15 10.97 16.775 17.172 18.063 18.285 19.265
0.90 0.10 11.31 18.25 18.508 19.098 19.247 19.91
0.95 0.05 11.66 19.725 19.852 20.144 20.219 20.555
1.00 0.00 12.00 21.2 21.2 21.2 21.2 21.2

 

Портфель 0 состоит только из облигаций, тогда как портфель 21 -только из акций. Портфель, состоящий только из облигаций, имеет ожидаемый доход, равный 5, 1%, а стандартное отклонение портфельного дохода равно 8, 3%. Портфель, состоящий только из акций, имеет ожидаемый доход в 12%, а стандартное отклонение составляет 21, 2%. Портфель, состоящий на 60% из акций и на 40% из облигаций, будет иметь ожидаемый доход в 9, 24%, стандартное отклонение дохода по такому портфелю составит 13, 71%, если корреляция между изменениями доходов по облигациям и акциям равна (г = 0, 18). Если изменения доходов по облигациям и акциям характеризуются совер­шенной положительной корреляцией (г = 1, 00), то тогда ожидаемый доход останется прежним, а стандартное отклонение будет включать 60% разности между более высоким стандартным отклонением дохода по акциям и стандартным отклонением дохода по облигациям. В связи с тем, что корреляция между изменениями доходов по облигациям и по акциям не является совершенной, меньшими оказываются и значе­ния стандартного отклонения портфельного дохода. Если представлен­ные облигации могут служить идеальным средством хеджирования вложений в акции или, другими словами, корреляция между измене­ниями доходов по облигациям и акциям оказывается совершенной и при этом отрицательной (г = -1, 00), то стандартное отклонение порт­фельного дохода будет равно только 9, 4%. В этом случае можно сфор­мировать портфель, состоящий на 28% из вложений в акции и на 72% - в облигации (портфель 6), у которого стандартное отклонение порт­фельного дохода практически равняется нулю. Это означает, что с ве­роятностью, равной единице, указанный портфель будет иметь сово­купный доход, составляющий 7, 03%.

Представим графически зависимость ве­личины стандартного отклонения от ожидаемого дохода (рис. 4.1) при различных коэффициентах корреляции.

 

 


 

 

Рис. 4.2. Зависимость стандартного отклонения дохода от ожидаемого дохода.

 


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 706; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь