Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Задача интерполирования и аппроксимации функций



 

Задача интерполирования состоит в том, чтобы по значениям функции f(x) в нескольких точках отрезка восстановить ее значения в остальных точках данного отрезка. Разумеется, такая постановка задачи допускает сколь угодно много решений.

Задача интерполирования возникает, например, в том случае, когда известны результаты измерений yk = f(xk) некоторой физической величины f(x) в точках xk, k = 0, 1, …, n и требуется определить ее значение в других точках. Интерполирование используется также при необходимости сгущения таблиц, когда вычисление значений f(x) по точным формулам трудоемко.

Иногда возникает необходимость приближенной замены ( аппроксимации ) данной функции (обычно заданной таблицей) другими функциями, которые легче вычислить. При обработке эмпирических (экспериментальных) зависимостей, результаты обычно представлены в табличном или графическом виде. Задача заключается в аналитическом представлении искомой функциональной зависимости, то есть в подборе формулы, корректно описывающей экспериментальные данные.

 

 

Интерполирование алгебраическими многочленами

 

Пусть функциональная зависимость задана таблицей y0 = f(x0); …, y1= f(x1); …, yn = f(xn). Обычно задача интерполирования формулируется так: найти многочлен P(x) = Pn(x) степени не выше n, значения которого в точках xi (i = 0, 1 2, …, n) совпадают со значениями данной функции, то есть P(xi) = yi.

Геометрически это означает, что нужно найти алгебраическую кривую вида

 

(7.1)

 

проходящую через заданную систему точек Мi(xi, yi) (см. рис. 7.1). Многочлен Р(х) называется интерполяционным многочленом. Точки xi (i = 0, 1, 2, …, n) называются узлами интерполяции.

 
 

 

 


Рис. 7.1. Интерполирование алгебраическим многочленом

 

Для любой непрерывной функции f(x) сформулированная задача имеет единственное решение. Действительно, для отыскания коэффициентов а0, а1, а2 , …, аn получаем систему линейных уравнений

 

(7.2)

 

определитель которой (определитель Вандермонда) отличен от нуля, если среди точек xi (i = 0, 1, 2, …, n) нет совпадающих.

Решение системы (7.2) можно записать различным образом. Однако наиболее употребительна запись интерполяционного многочлена в форме Лагранжа и в форме Ньютона.

Запишем без вывода интерполяционный многочлен Лагранжа:

 

(7.3)

 

Нетрудно заметить, что старшая степень аргумента х в многочлене Лагранжа равна n. Кроме этого, несложно показать, что в узловых точках значение интерполяционного многочлена Лагранжа соответствует заданным значениям f(xi).

 

 

Интерполяционная формула Ньютона

 

Интерполяционная формула Ньютона позволяет выразить интерполяционный многочлен Pn(x) через значение f(x) в одном из узлов и через разделенные разности функции f(x), построенные по узлам x0, x1, …, xn. Эта формула является разностным аналогом формулы Тейлора:

 

(7.4)

 

Прежде чем приводить формулу Ньютона, рассмотрим сведения о разделенных разностях. Пусть в узлах известны значения функции f(x). Предполагаем, что среди точек xk, k = 0, 1, …, n нет совпадающих. Тогда разделенными разностями первого порядка называются отношения

(7.5)

 

Будем рассматривать разделенные разности, составленные по соседним узлам, то есть выражения . По этим разделенным разностям первого порядка можно построить разделенные разности второго порядка:

(7.6)

 

Аналогично определяются разности более высокого порядка. То есть пусть известны разделенные разности k-го порядка тогда разделенная разность k+1-го порядка определяется как

 

(7.7)

 

Интерполяционным многочленом Ньютона называется многочлен

 

(7.8)

 

Показано, что интерполяционный многочлен Лагранжа (7.3) совпадает с интерполяционным многочленом Ньютона (7.8).

 

Замечания

 

· В формуле (7.8) не предполагалось, что узлы x0, x1, …, xn расположены в каком-то определенном порядке. Поэтому роль точки x0 в формуле (7.8) может играть любая из точек x0, x1, …, xn. Соответствующее множество интерполяционных формул можно получить из (7.8), перенумеровав узлы. Например, тот же самый многочлен Pn(x) можно представить в виде

 

(7.9)

 

· Если то (7.8) называется формулой интерполирования вперед, а (7.9) - формулой интерполирования назад.

· Интерполяционную формулу Ньютона удобнее применять в том случае, когда интерполируется одна и та же функция f(x), но число узлов интерполяции постепенно увеличивается. Если узлы интерполяции фиксированы и интерполируется не одна, а несколько функций, то удобнее пользоваться формулой Лагранжа.

 

 


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 374; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь