Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Решение проблемы отходов на всех стадиях жизненного цикла продукции



Разработайте алгоритм выбора материала для устройства противофильтрационного экрана полигона. Нарисуйте разрез полигона с указанием всех технических элементов конструкции УЗО. Укажите материалы и толщины каждого элемента.

Защита горных пород зоны аэрации, подземных и поверхностных вод от загрязнения в период эксплуатации полигона достигается благодаря наличию естественного геохимического барьера или искусственно создаваемому защитному экрану, устраиваемому в основании полигона с дренажной системой сбора и удаления фильтрата, а также системы выполнения послойной изоляции ТБО связным грунтом. После окончания эксплуатации полигона и его закрытия, охрану горных пород зоны аэрации, грунтовых и поверхностных вод, атмосферного воздуха осуществляют устройством верхнего перекрытия (защитного экрана поверхности полигона) в сочетании с защитным экраном и системой сбора и удаления фильтрата в основании полигона.

Защитные экраны основания и поверхности полигона - это конструктивные элементы, обеспечивающие природоохранные функции.

Срок службы защитных экранов определяется как периодом эксплуатации полигона (заполнение полигона до проектной вместимости полигона), что составляет 15-30 лет, так и пассивным периодом, когда полигон закрыт и не принимает отходы. Однако в теле полигона после его закрытия и рекультивации протекают активно аэробные и анаэробные процессы разложения органического вещества, сопровождающиеся образованием биогаза и фильтрата, и, следовательно, веществ, представляющих угрозу окружающей среде. Длительность этого периода определяется морфологическим составом отходов, климатическими условиями и другими факторами, и по оценкам различных авторов этот период составляет от 30 до 100 лет. Таким образом, срок службы защитных экранов полигонов ТБО должен составлять от 45 до 100 лет.

Элементы защитных экранов основания и поверхности полигона находятся в непосредственном контакте с агрессивной средой - фильтратом и биогазом. Поэтому при подборе материалов для выполнения этих конструкций следует оценивать их устойчивость к агрессивным средам.

Для устройства защитных экранов применяют сертифицированные материалы.

Противофильтрационный экран в основании полигона совместно с защитным экраном, устраиваемым при перекрытии верха полигона после окончания его эксплуатации, образуют замкнутую систему типа «саркофаг». В роли противофильтрационного экрана могут выступать природные (естественные) геохимические барьеры и искусственные барьеры.

4.1 Природные геохимические барьеры

Природными геохимическими барьерами называют естественное грунтовое основание, которое обладает достаточными противофильтрационными свойствами, мощность слоя которого обеспечивает нераспространение загрязняющих веществ в горные породы зоны аэрации и грунтовые воды. Подобными свойствами обладают глины с коэффициентом фильтрации см/с. Минимальная мощность природного геохимического барьера должна быть не менее 1 - 3 м.

В случае отсутствия подобных пород в основании проектируемого полигона то устраивают искусственные противофильтрационные экраны и завесы.

4.2 Искусственные противофильтрационные экраны

Для отходов III, IV, Vклассов опасности выбирают следующие противофильтрационные экраны:

1. Экран глинистый однослойный. Наиболее простой по конструкции и дешевый вид экрана. Исходная глина ненарушенной структуры должна иметь коэффициент фильтрации не более 0, 001 м/сут. При использовании ее в экранах глина превращается в пасту путем перемешивания, в результате чего достигается необходимый коэффициент фильтрации. Толщина экрана обосновывается расчетами, исходя из допустимого градиента напораi= 10, но должна быть не менее 0, 5 м [1].

2. Экран грунтобитумный. Он служит основанием для других типов экранов и представляет собой минеральный естественный грунт, обработанный на глубину 10-15 см жидким битумом или нефтью с добавлением цемента и уплотненный гладкими катками. Перед внесением добавок грунт протравливается гербицидами на глубину до 20 см [1].

3. Экран из железобетонных плит. В чистом виде бетон или железобетон в экранах применяется редко, так как этот материал имеет сравнительно высокий коэффициент фильтрации (= 0, 01 м/сут). Для снижения коэффициента фильтрации бетонных и железобетонных конструкций до= 0, 00001 м/сут элементы плит покрывают торкретом или применяют силикатизацию. В связи с тем, что это требует значительных затрат, железобетон применяется в небольших емкостных сооружениях типа резервуаров и отстойников. По фильтрационным и прочностным соображениям толщина монолитных или сборных железобетонных плит принимается не менее 10-15 см, бетон марки не ниже В30, F100, W8 в соответствии со СНиП 2.03.01-84 [1].

4. Экран из полимербетона. Полимербетоны обладают повышенной плотностью ( < 0, 001 м/сут), трещиностойкостью, морозостойкостью и устойчивостью к воздействию агрессивных сред. В отличие от обычного бетона, в полимербетонах в качестве вяжущего вещества вместо цемента используются эпоксидные смолы [1].

5. Экран асфальтобетонный однослойный с битумным покрытием. Асфальтобетонные экраны выполняются из гидротехнического мелкозернистого асфальта. Основанием однослойного экрана могут быть практически любые грунты, поддающиеся обработке грейдером, с модулем деформации после уплотнения не менее 10 МПа (100 кгс/см2). После планировки грунты подвергаются обработке (протравливанию) гербицидами на глубину 20 см. Затем производится поверхностная обработка грунта на глубину 10-15 см с внесением битума или сырой нефти из расчета 1, 5-2, 0 кг/м2. После чего основание уплотняется 5-тонными катками до полного устранения деформации. При сравнительно слабых пылеватых супесях и суглинках перед розливом нефти или битума рекомендуется вносить активные добавки. На подготовленное основание укладывается мелкозернистый асфальтобетон слоем 40-60 мм. Поверхность асфальтобетона покрывается слоем жидкого битума толщиной 2-4 мм с последующей подсыпкой слоя песка толщиной 5-10 мм. При напорах до 5-10 м экран считается нефильтрующим [1].

6. Экран асфальтобетонный с покрытием битумно-латексной эмульсией. Технология устройства данного экрана предусматривает розлив битумно-латексной эмульсии слоем 4-6 мм, состоящей из 20 % латекса и 80 % битума по массе. Битумно-латексная эмульсия наносится на горизонтальную поверхность 1-2 слоями, а на откосы, - 2-3 слоями толщиной 2 мм. Ввиду чувствительности экрана к свету поверхность его засыпается защитным слоем из однородного грунта или промышленных отходов фракцией не более 3 мм. Толщина защитного слоя не менее 0, 5 м. Работы выполняются при температуре не ниже 10 °С. Битумно-латексная эмульсия приготовляется в специальном битумном котле, где битум разогревается до 140-150 °С и при непрерывном перемешивании в него вводится латекс. Время приготовления 5-10 ч (уточняется в процессе испытания перед началом работ). Охлажденная до 120°С битумно-латексная эмульсия наносится на асфальт автогудронатором с гладилкой или с помощью распылителя набрызгом [1].

7. Экран асфальтополимербетонный. Конструктивно асфальтополимер-бетонные экраны почти не отличаются от обычных асфальтобетонных. Различие лишь в том, что асфальтобетоны выполняются на вяжущем из битума, а асфальтополимербетоны - на модифицированном вяжущем, состоящем из битума с добавлением каучука или других полимеров в количестве 10-20% массы битума. Это придает асфальтополимербетону повышенную морозостойкость и эластичность и снижает его водопроницаемость, что обусловливает целесообразность его применения при строительстве противофильтрационных экранов. Асфальтополимербетонные экраны могут выполняться монолитными и сборно-монолитными [1].

Таким образом, из всех выше перечисленных экранов подходящих для данных классов опасности, предпочтительнее использовать экран асфальтобетонный однослойный с битумным покрытием, т.к. в основании полигона находится песок, который обладает очень большим коэффициентом фильтрации.

Полигоны размещаются за пределами городов и других населенных пунктов. Размер санитарно-защитной зоны от жилой застройки до границ полигона 500 м (СНиП 2.07.01-89*, табл.12). Кроме того, размер санитарно-защитной зоны уточняется при расчете газообразных выбросов в атмосферу. Границы зоны устанавливаются по изолинии 1 ПДК, если она выходит из пределов нормативной зоны. Уменьшение зоны менее 500 м не допускается.

1.3. Перед проектированием заказчик с заинтересованными организациями (архитектурно-планировочным управлением, отделом по делам строительства и архитектуры, органами экологии и санэпиднадзора и гидрогеологической службой) определяет район, в котором осуществляется подбор участка для размещения полигона.
По гидрогеологическим условиям лучшими являются участки с глинами или тяжелыми суглинками и грунтовыми водами, расположенными на глубине более 2 м. Исключается использование под полигон участков с выходами грунтовых вод в виде ключей, затопляемых паводковыми водами территорий, районов геологических разломов, а также земельных участков, расположенных ближе 15 км от аэропортов.
Под полигоны отводятся отработанные карьеры, свободные от ценных пород деревьев, участки в лесных массивах, овраги и другие территории.

1.4. При отводе участка выдается задание на дальнейшее использование его после закрытия полигона (создание лесопаркового комплекса, устройство открытых складов строительных материалов и тары непищевого применения и т.п.).
Возможность капитального строительства на участках складирования твердых бытовых отходов (ТБО) определяется в каждом конкретном случае дополнительными исследованиями.

1.5. Площадь участка, отводимого под полигон, выбирается, как правило, из условия срока его эксплуатации не менее 15-20 лет. В табл.1 приведена ориентировочная площадь участка складирования полигона на расчетный срок эксплуатации 15 лет.


Таблица 1

             

Средняя численность обслуживаемого населения,
тыс. чел.


Высота складирования ТБО, м

 

6, 5

4, 5*-5, 5

-

-

-

-

12, 5

8, 5

6, 5* -7, 5

-

-

-

31, 0

21, 0

16, 0

11, 5*-13, 5

-

-

61, 0

41, 0

31, 0

23, 0

16, 5*-20

-

91, 0

61, 0

46, 0

34, 0

26, 0

-

121, 0

81, 0

61, 0

45, 0

35, 0

27*-31, 0

________________
* указана площадь участков в га, по форме близких к квадрату.

 

1.6. Наиболее экономичны земельные участки, близкие по форме к квадрату и допускающие максимальную высоту складирования ТБО (с учетом заложения внешних откосов 1: 4). В отдельных случаях при благоприятных горно-геологических условиях, заложение откосов может быть увеличено при условии разработки специального проекта и прохождения технической экспертизы в организации - разработчике инструкции. Схематический разрез полигона представлен на рис.1.

Рис.1. Схематический разрез полигона ТБО

Рис.1. Схематический разрез полигона ТБО

1 - наружная (окончательная) изоляция; 2 - промежуточная изоляция; 3 - ТБО;
4 - водоупорное основание; Н - высота; н - показатель снижения высоты; Ш - ширина; УГВ - уровень грунтовых вод

 

1.7. На выбранном под полигон участке выполняются топографическая съемка, геологические, гидрогеологические изыскания и санитарные исследования. Для проектирования полигона необходимо иметь план всего участка в масштабе 1: 1000 с горизонталями через 1 м. План участка хозяйственной зоны, инженерных сооружений и внешних коммуникаций составляется в масштабе 1: 500 с горизонталями через 0, 5 м (проект внешних сетей большой протяженности может выполняться в масштабе 1: 1000).
Геологические исследования определяют порядок напластования, мощность и состав пород, слагающих основание полигона, коэффициенты фильтрации грунтов всех разностей. Минимальная глубина разведки 10 м. При разнородных грунтах необходимо исследования проводить до водоупорного слоя и углубляться в него на 1-1, 5 м.
Гидрогеологические исследования определяют уровень грунтовых вод (УГВ) и направление их потока. Для расчета водоотводных канав, защищающих полигон от потока поверхностных вод (дождевых и талых), собираются сведения об интенсивности и испаряемости атмосферных осадков и площади их водосбора.
В результате геологических и гидрогеологических изысканий должны быть составлены: план расположения шурфов (скважин), геологические (литологические) профили, заключение гидрогеолога о пригодности намеченного участка под полигон ТБО и рекомендации по инженерной защите окружающей природной среды.

Для полигонов с нагрузкой на основание 10 т.м или 100 тыс. т.га проводятся комплексные геологические исследования, включающие более полное изучение гидрогеологических, геофизических, ландшафтно-геофизических и других условий отведенного земельного участка с составлением прогноза возможного отрицательного воздействия объекта на природные экосистемы в перспективе (30-50 лет).
С учетом этих материалов заключение о пригодности выбранного участка под устройство полигона ТБО выдают органы охраны природы и санитарно-эпидемиологического надзора города (района, области, края).

 

4. Напишите Ваши комментарии по следующим вопросам:

а) сущность процесса брожения;

б) виды брожения;

в) принципиальное отличие брожения от полного биологического окислении

В основе процессов распада безазотистых органических веществ лежат различные формы брожения, которые постоянно происходят в природе. Брожение – анаэробное дыхание, при котором микроорганизмы используют выделяющуюся энергию для своей жизнедеятельности.

Впервые биологическую природу брожения открыл в 60-х годах 19 в. гениальный французский ученый Луи Пастер. Пастеру удалось на примере молочнокислого, спиртового и маслянокислого брожения доказать, что эти процессы вызываются жизнедеятельностью микроорганизмов.

Спиртовое брожение углеводов вызывают дрожжи (Saccharomyces cerevisiae), некоторые виды бактерий (Sarcina ventriculi) и отдельные представители мукоровых грибов рода Mucor. При спиртовом брожении молекула гексозы распадается на этанол и углекислый газ. В ходе брожения образуется много промежуточных продуктов — гексозомонофосфат, фруктозодифосфат, фосфотриозы, фосфоглицериновая кислота, фосфопировиноградная кислота, пировиноградная кислота, уксусный альдегид и, наконец, этиловый спирт.

При содержании в сбраживаемом растворе более чем 30% сахара часть его остается неиспользованной, так как при этих условиях образуется до 15% спирта, а при такой концентрации спирт подавляет жизнедеятельность дрожжей. Поэтому натуральные вина содержат не более 15% спирта. Главное преимущество чистых культур дрожжей заключается в том, что брожение виноградного сока протекает и заканчивается быстро, а отсутствие посторонней микрофлоры позволяет получать вина хорошего вкуса и аромата (с хорошим «букетом»). По окончании брожения молодое вино стабилизируют и дают ему созреть. Эти процессы занимают несколько месяцев, а при изготовлении высококачественных красных вин — даже несколько лет. В течение первого года во многих красных винах происходит второе, спонтанное брожение — яблочно-молочнокислое, которое вызывается рядом молочнокислых бактерий (Prdiococcus, Leuconostoc). В результате этого яблочная кислота винограда превращается в молочную кислоту и СО2, т. е. дикарбоновая кислота превращается в монокарбоновую, и кислотность вина уменьшается, оно становится высококачественным.

Уксуснокислое брожение — биологический окислительный процесс, при котором с помощью уксуснокислых бактерий спирт окисляется в уксусную кислоту. Если какую-либо жидкость, содержащую небольшое количество спирта (вино, пиво), оставить открытой, то в ней постепенно появляется уксусная кислота и кожистая пленка (уксусная матка) на поверхности. Уксуснокислые бактерии объединены в род Acetobacter, содержащий ряд видов и подвидов. Этиловый спирт под влиянием уксуснокислых бактерий подвергается окислению, в результате которого вначале образуется уксусный альдегид, а затем — уксусная кислота. При использовании специальных рас уксуснокислых бактерий максимальный выход уксуса достигает 14, 5%. Уксуснокислые бактерии превращают ряд многоатомных спиртов в сахар. Одна из таких реакций используется для получения сорбозы из сорбитола. Сорбоза — промежуточный продукт синтеза аскорбиновой кислоты. Она применяется в качестве суспендирующего агента при изготовлении многих лекарственных препаратов. Уксуснокислые бактерии могут наносить вред в виноделии и пивоваренной промышленности, вызывая прокисание вина и пива.

Молочнокислое брожение — широко распространенное биохимическое явление, давно известное на примере скисания молока. Под влиянием молочнокислых бактерий (семейство Lactobacillaceae)лактоза расщепляется на составляющие ее гексозы — глюкозу и галактозу, которые затем специфическими ферментами превращаются в молочную кислоту. Свертывание молока происходит вследствие того, что молочная кислота отщепляет кальций от казеина, белок превращается в параказеин и выпадает в осадок. Молочнокислые бактерии широко распространены в природе. Они обнаруживаются в молоке, воздухе, на коже, шерсти, в тонком и толстом кишечнике и представлены большим количеством видов палочковидных и кокковидных бактерий, различающихся не только по морфологии, но и физиологическим свойствам (по использованию различных источников углерода и азота).

Маслянокислое брожение также широко встречается в природе. Возбудитель маслянокислого брожения был открыт Л. Пастером. На примере маслянокислого брожения Л. Пастер разработал учение об анаэробах. Типичный представитель бактерий маслянокислого брожения — азотфиксирующий Clostridium pasteurianum. Маслянокислые бактерии в больших количествах встречаются в почве, навозе, на растениях, в молоке, сыре. Многие из них являются анаэробами и относятся к роду Clostridium.

Маслянокислое брожение — сложный биохимический процесс расщепления углеводов, в ряде случаев жиров и белков, на масляную кислоту, углекислоту и воду, при этом образуется много побочных продуктов — уксусная, молочная, пропионовая и другие кислоты.

Из числа других форм брожения чрезвычайно важным является брожение целлюлозы (клетчатки), в которой заложены огромные запасы углерода. Разложение целлюлозы, которая в количественном отношении представляет один из основных компонентов растительных тканей, осуществляется главным образом высоко специализированными в отношении питания аэробными и анаэробными микроорганизмами. Среди аэробных бактерий, расщепляющих целлюлозу, наиболее важны скользящие бактерии рода Cytjphaga. Целлюлоза — единственное вещество, которое они могут использовать в качестве источника углерода. Цитофаги быстро растворяют и окисляют целлюлозу.

 Брожение — процесс анаэробного распада углеводов на более простые соединения с выделением энергии, совершающийся при участии некоторых микроорганизмов или выделенных из них ферментов. Одним из примеров брожения является спиртовое брожение, вызываемое дрожжами и заключающееся в разложении Сахаров на спирт и углекислый газ. Известны также молочнокислое, маслянокислое, уксуснокислое брожение и др. Способность микроорганизмов вызывать брожение с накоплением специфических для них продуктов используют в промышленности для массового получения этих веществ (например спиртовое брожение — для получения спирта; молочнокислое — при производстве кефира и т. п.). На свойстве некоторых патогенных микроорганизмов сбраживать те или иные углеводы основаны методы выращивания бактериальных культур и идентификации возбудителей.

Брожение — процесс распада органических веществ (преимущественно углеводов) под действием ферментов, вырабатываемых микроорганизмами. Как и дыхание, брожение включает окислительно-восстановительные превращения субстрата, связанные с выделением энергии. Но, в отличие от дыхания, брожение не приводит к образованию воды и углекислого газа, а заканчивается накоплением недоокисленных продуктов (спирт, молочная кислота, масляная кислота и др.). Под брожением обычно понимают анаэробный процесс, однако к этой же группе превращений несколько условно относят также уксуснокислое и лимоннокислое «брожения», хотя и приводящие к накоплению органических кислот, но совершающиеся обязательно в присутствии кислорода.
Брожение известно было в глубокой древности» им пользовались для приготовления вина и уксуса. Однако лишь во второй половине 19 века было установлено, что спиртовое брожение связано с жизнедеятельностью дрожжей (см.) и является процессом, обеспечивающим организм энергией в отсутствие кислорода. Понимание биохимической сущности этого явления стало возможным после выделения из дрожжевой клетки ферментных систем. В 1897 г. Бухнер (Е. Buchner) растирал дрожжи с кварцевым песком и трепелом и после фильтрования под давлением получил бесклеточный сок, способный вызывать спиртовое брожение. Бухнер полагал, что сок содержит фермент зимазу. Впоследствии А. Н. Лебедевым был предложен новый, более простой метод приготовления бесклеточного дрожжевого сока. «Сок Лебедева», или «мацерационный сок», получают подсушиванием дрожжей в термостате при t° 25—30°, последующей обработкой их водой в течение 2 часов при t° 35° и фильтрованием.
Зимаза представляет собой сложный комплекс ферментов, катализирующих последовательные превращения сбраживаемого субстрата. Спиртовое брожение выражается суммарным уравнением реакции:
C6H12O6→ 2CO2+2C2H5OH
Оно проходит через ряд этапов, включающих обязательное участие фосфорной кислоты, образование фосфорных эфиров углеводов и их превращения, в результате которых осуществляется процесс окисления, т. е. отнятия водорода от органического субстрата. Освобождающаяся при этом энергия частично утилизируется в виде богатых энергией связей аденозинтрифосфорной кислоты, которая может быть легко использована клеткой. В этом биологический смысл брожения как процесса, обеспечивающего «жизнь без воздуха».
С учетом энергетической эффективности спиртового брожения суммарное уравнение реакции принимает вид:
C6H12O6+2H3PO4+2АДФ→ 2CO2+2C2H5OH+2АТФ
где АДФ — аденозиндифосфорная кислота и АТФ — аденозинтрифосфорная кислота.
Отличие между разными типами брожения заключается в субстрате сбраживания, а также в том, на какой из промежуточных продуктов происходит перенос водорода при окислении. Если при спиртовом брожении образование спирта является результатом переноса водорода на ацетальдегид, то при молочнокислом брожении восстановлению подвергается пировиноградная кислота, при маслянокислом брожении в результате нехватки акцепторов водорода часть его выделяется в молекулярной форме:
C6H12O6→ C4H8O2+2CO2+2H2
Три упомянутых вида брожения являются основными. Все другие типы представляют собой их комбинацию. При уксуснокислом «брожении», происходящем по уравнению С2Н5OH+O2→ С2Н4O2+H2O, ацетат, накапливающийся в значительных количествах, не является конечным продуктом; по исчерпании запасов спирта он далее окисляется уксуснокислыми бактериями до CO2 и H2O. При лимоннокислом «брожении» образование лимонной кислоты из сахара тесно связано с процессом дыхания. В настоящее время показано, что накопление лимонной кислоты плесневыми грибами — лишь одно из звеньев сложной цепи окислительных превращений ди- и трикарбоновых кислот, называемых лимоннокислым циклом (см. Окисление биологическое).
Образование лимонной кислоты происходит лишь до тех пор, пока запас субстрата не исчерпан. При полном использовании сахара накопившаяся лимонная кислота подвергается более глубокому окислению. Значительное накопление лимонной кислоты в культурах плесневых грибов дает возможность использовать их в технике для получения лимонной кислоты из сахара. Практическое применение находят и другие виды брожения.
Спиртовое брожение используется для промышленного получения спирта. В качестве сырья употребляют продукты, содержащие крахмал, — картофель, кукурузу, злаки, а также отходы сахарного производства и деревообрабатывающей промышленности. Для осахаривания крахмал предварительно обрабатывают амилазой солода. Брожение ведут на чистых культурах дрожжей, отличающихся устойчивостью к повышенному содержанию спирта. Различные расы дрожжей применяют для производства пива b виноградного вина. В хлебопечении используют прессованные дрожжи — смесь нескольких рас дрожжей. Образующиеся при брожении спирт и CO2разрыхляют тесто и способствуют его подъему, а побочные продукты Б. придают хлебу своеобразный вкус и аромат. Важное техническое значение имеет также получение глицерина путем видоизмененного спиртового Б. Спиртовое брожение может быть использовано также при клинических анализах. При исследовании биологических жидкостей на содержание сахара (глюкозы и фруктозы) применяют так называемую бродильную пробу, заключающуюся в том, что при добавлении дрожжей сахар подвергается сбраживанию с выделением CO2 (обнаруживается по поглощению щелочью) и этилового спирта, о наличии которого узнают по образованию йодоформа при реакции с йодом в щелочной среде.
Молочнокислое Б. вызывается микроорганизмами, широко распространенными в природе. Они содержатся во многих фруктах и овощах, ржаной муке, солоде, силосе и др. Но основной средой для их развития является молоко, где под влиянием образуемой ими молочной кислоты наступает свертывание казеина. Для предохранения от скисания молоко подвергают пастеризации, при которой возбудители молочнокислого брожения погибают. Наиболее широко молочнокислое Б. применяют при производстве простокваши, кефира, ацидофилина и т. п. Молочнокислые бактерии, способные обитать в кишечнике, подавляют его гнилостную микрофлору.
Маслянокислое Б. возбуждается группой анаэробных бактерий, встречающихся в почве, воздухе, загрязненной воде, скоплениях разлагающихся растительных остатков. Маслянокислые бактерии образуют устойчивые споры, выдерживающие кипячение в течение нескольких минут. Они чувствительны к кислоте и поэтому их деятельность проявляется там, где молочнокислое брожение исключено (пастеризованное молоко) или сильно подавлено (сырое молоко при длительном хранении на холоду). Характерные признаки маслянокислого Б.— выделение газов, острый запах масляной кислоты, приобретение продуктом неприятного вкуса. В баночных консервах и сырах при этом наблюдается вспучивание. Это же Б. может развиваться в сырой муке, придавая ей горький вкус.

Брожение — это процесс, важный в анаэробных условиях, в отсутствие окислительного фосфорилирования. В ходе брожения, как и в ходе гликолиза, образуется АТФ. Во время брожения пируват преобразуется в различные вещества. Хотя на последнем этапе брожения (превращения пирувата в конечные продукты брожения) не освобождается энергия, он крайне важен для анаэробной клетки, поскольку на этом этапе регенерируется никотинамидадениндинуклеотид (NAD+), который требуется для гликолиза. Это важно для нормальной жизнедеятельности клетки, поскольку гликолиз для многих организмов — единственный источник АТФ в анаэробных условиях.

В ходе брожения происходит частичное окисление субстратов, при котором водород переносится на NAD+ (никотинамидадениндинуклеотид). В ходе других этапов брожения его промежуточные продукты служат акцепторами водорода, входящего в состав NADH; в ходе регенерации NAD+ они восстанавливаются, а продукты восстановления выводятся из клетки.

Конечные продукты брожения содержат химическую энергию (они не полностью окислены), но считаются отходами, поскольку не могут быть подвергнуты дальнейшему метаболизму в отсутствие кислорода (или других высокоокисленных акцепторов электронов) и часто выводятся из клетки. Следствием этого является тот факт, что получение АТФ брожением менее эффективно, чем путём окислительного фосфорилирования, когда пируват полностью окисляется до двуокиси углерода. В ходе разных типов брожения на одну молекулу глюкозы получается от двух до четырёх молекул АТФ (ср. около 36 молекул путём аэробного дыхания).

Фосфолирирование субстратное, есть гликолиз, превращение одного субстрата в другой с выделением энергии, затем пируват.

Биологическое окисление – это совокупность окислительно-восстановительных превращений различных веществ в живых организмах. Окислительно-восстановительными называют реакции, протекающие с изменением степени окисления атомов вследствие перераспределения электронов между ними.

Типы процессов биологического окисления:

1)аэробное (митохондриальное) окислениепредназначено для извлечения энергии питательных веществ с участием кислорода и накоплении её в виде АТФ. Аэробное окисление называется такжетканевым дыханием, поскольку при его протекании ткани активно потребляют кислород.

2) анаэробное окисление– это вспомогательный способ извлечения энергии веществ без участия кислорода. Анаэробное окисление имеет большое значение при недостатке кислорода, а также при выполнении интенсивной мышечной работы.

3) микросомальное окислениепредназначено для обезвреживания лекарств и ядов, а также для синтеза различных веществ: адреналина, норадреналина, меланина в коже, коллагена, жирных кислот, желчных кислот, стероидных гормонов.

4) свободнорадикальное окислениенеобходимо для регуляции обновления и проницаемости клеточных мембран.

Основным путём биологического окисления является митохондриальное, связанное с обеспечением организма энергией в доступной для использования форме. Источниками энергии для человека являются разнообразные органические соединения: углеводы, жиры, белки. В результате окисления питательные вещества распадаются до конечных продуктов, в основном - до СО2и Н2О (при распаде белков также образуетсяNH3). Выделяемая при этом энергия накапливается в виде энергии химических связей макроэргических соединений, преимущественно – АТФ.

 

Б И Л Е Т № 8

Участники проектирования. Обеспечение экологической безопасности воздушного бассейна за счет применения фильтров: принципы расчета рукавного фильтра. Какие способы регенерации ткани применяют в тканевых фильтрах?

Участники проектирования. Участники проектирования (разработки, согласования, утвержденияпредпроектной и проектной документации для строительства): - предприятие - заказчик; - НИИ (головная организация) + соисполнители (разработчики исходных данных на проектирование); - Генеральный проектировщик (организация, ответственная за проект в целом); - специализированные проектные организации; - Генеральный подрядчик (строительная организация) и субподрядчики. - Экспертиза (в т.ч. ГЭЭ) Принципы расчета рукавного фильтра. Определяем удельную газовую нагрузку: q = qнc1c2c3c4c5 , где qн - нормативная удельная нагрузка, зависящая от вида пыли и ее склонности к агломерации (определяется по данным, приведенным ниже); 1 c - коэффициент, характеризующий особенность регенерации фильтрующих элементов; 2 c - коэффициент, учитывающий влияние концентрации пыли на удельную газовую нагрузку (определяется по рис. 5.8); 3 c - коэффициент, учитывающий влияние дисперсного состава пыли в газе (определяется по данным, приведенным ниже); 4 c - коэффициент, учитывающий влияние температуры газа (определяется по данным, приведенным ниже); 5 c - коэффициент, учитывающий требования к качеству очистки.Значения нормативной удельной газовой нагрузки ( qн в м3/(м2⋅ мин)дано в таблице. Определяем поверхность фильтрования: F = V (60q); Определяем гидравлическое сопротивление фильтровальной перегородки: Δ Рп′ =Kп μ wn, гдегде п K - коэффициент, характеризующий сопротивление фильтровальной перегородки, м-1; μ - динамическая вязкость газа, Па⋅ с; w – скорость фильтрования, м/с; п - показатель степени, зависящий от режима течения газа сквозь перегородку (для ламинарного режима n = 1, для турбулентного n > 1). Гидравлическое сопротивление фильтра: Δ P ф= Δ Pк + Δ Pп, где Δ Pк-сопротивление корпуса, Δ Pп-сопротивление перегородки. Фильтрующая поверхность аппарата определяется из выражения F ф = [(Vп +V р) 60q] + F p; гдеп V - объем газа, поступающего на очистку, м3/ч; V p - объем газа или воздуха, расходуемого на регенерацию ткани, м3/ч; q - удельная газовая нагрузка фильтровальной перегородки при фильтровании, м3/(м2⋅ мин); F p -фильтрующая поверхность, отключаемая на регенерацию в течение 1 ч, м2. Величину F p следует рассчитывать по зависимости Fp=NcFc᷊ ᷊ τ ’mp/3600, где N c - число секций в фильтре; F c - фильтрующая поверхность секции, м2; τ p ′ - время регенерации секции, с; m p - число регенерации в течение 1 ч. Какие способы регенерации применяются в тканевых фильтрах. Регенерация фильтровальной ткани рукавов производится путем механического или аэродинамического воздействия на фильтровальную ткань с целью разрушения и удаления слоя осевшей пыли. При выборе способа регенерации имеют значение вид ткани, конструкция аппарата, характеристики пыли и технологического процесса, другие факторы. Механическое встряхивание может выполняться несколькими способами. Нестойкие на изгиб ткани (например, из стекловолокна) регенерируют быстрым покачиванием из стороны в сторону без изменения натяжения. Фильтры из более эластичных и нетолстых тканей можно отряхивать, придавая материалу волнообразные колебания. Широко используемые для обработки газовых выбросов рукавные фильтры (аппараты с вертикальными фильтрующими элементами в виде тканевых рукавов) встряхивают волнообразным изменением натяжения ткани, поднимая и опуская вверх рукава. Большинство встряхивающих устройств снабжается электроприводом. Иногда встряхивание комбинируют с продувкой тканей. В ряде рукавных фильтров регенерация фильтровальной ткани осуществляется путем обратной струйной и импульсной продувки рукавов. Обратной продувкой регенерируют ткани при улавливании легкосбрасываемыхпылей. Для этого изменяют направление дутья, подавая на регенерацию свежий или очищенный воздух. Последний вариант предпочтительней, так как не увеличивается количество воздуха в системе. Другая разновидность выдувания пыли - импульсная регенерация - используется в рукавных фильтрах при схеме подачи загрязненного воздуха снаружи внутрь рукава и отложениях пыли на его внешней поверхности. При импульсной продувке струя сжатого воздуха, исходящая из сопла распределительной трубы, подсасывает очищенный газ (воздух) и поступает в рукав. Под воздействием избыточного давления рукав раздувается, происходит разрушение слоя осевшей пыли и ее выпадение в бункер.


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 492; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.062 с.)
Главная | Случайная страница | Обратная связь