Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Б И О Х И М И Я Г О Р М О Н О В⇐ ПредыдущаяСтр 19 из 19
ГОРМОНЫ - это биологически активные вещества, которые синтезируются в малых количествах в специализированнных клетках эндокринной системы и через циркулирующие жидкости (например, кровь) доставляются к клеткам-мишеням, где оказывают свое регулирующее действие. Гормоны, как и другие сигнальные молекулы, обладают некоторыми общими свойствами. ОБЩИЕ СВОЙСТВА ГОРМОНОВ. 1) выделяются из вырабатывающих их клеток во внеклеточное пространство; 2) не являются структурными компонентами клеток и не используются как источник энергии. 3) способны специфически взаимодействовать с клетками, имеющими рецепторы для данного гормона. 4) обладают очень высокой биологической активностью - эффективно действуют на клетки в очень низких концентрациях (около 10-6 - 10-11 моль/л). МЕХАНИЗМЫ ДЕЙСТВИЯ ГОРМОНОВ. Гормоны оказывают влияние на клетки-мишени. КЛЕТКИ-МИШЕНИ - это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки. БИОХИМИЧЕСКИЕ МЕХАНИЗМЫ ПЕРЕДАЧИ СИГНАЛА ОТ ГОРМОНА В КЛЕТКУ-МИШЕНЬ. Любой белок-рецептор состоит, минимум из двух доменов (участков), которые обеспечивают выполнение двух функций: - " узнавание" гормона; - преобразование и передачу полученного сигнала в клетку. Каким образом белок-рецептор узнает ту молекулу гормона, с которой он может взаимодействовать? Один из доменов белка-рецептора имеет в своем составе участок, комплементарный какой-то части сигнальной молекулы. Процесс связывания рецептора с сигнальной молекулой похож на процесс образования фермент-субстратного комплекса и может определяется величиной константы сродства. Большинство рецепторов изучены недостаточно, потому что их выделение и очистка очень сложные, а содержание каждого вида рецепторов в клетках очень низкое. Но известно, что гормоны взаимодействуют со своими рецепторами физико-химическим путем. Между молекулой гормона и рецептором формируются электростатические и гидрофобные взаимодействия. При связывании рецептора с гормоном происходят конформационные изменения белка-рецептора и комплекс сигнальной молекулы с белком-рецептором активируется. В активном состоянии он может вызывать специфические внутриклеточные реакции в ответ на принятый сигнал. Если нарушен синтез или способность белков-рецепторов связываться с сигнальными молекулами, возникают заболевания - эндокринные нарушения. Есть три типа таких заболеваний: 1. Связанные с недостаточностью синтеза белков-рецепторов. 2. Связанные с изменением структуры рецептора - генетических дефекты. 3. Связанные с блокированием белков-рецепторов антителами. МЕХАНИЗМЫ ДЕЙСТВИЯ ГОРМОНОВ НА КЛЕТКИ-МИШЕНИ. В зависимости от строения гормона существуют два типа взаимодействия. Если молекула гормона липофильна, (например, стероидные гормоны), то она может проникать через липидный слой наружной мембраны клеток-мишеней. Если молекула имеет большие размеры или является полярной, то ее проникновение внутрь клетки невозможно. Поэтому для липофильных гормонов рецепторы находятся внутри клеток-мишеней, а для гидрофильных - рецепторы находятся в наружной мембране. Для получения клеточного ответа на гормональный сигнал в случае гидрофильных молекул действует внутриклеточный механизм передачи сигнала. Это происходит с участием веществ, которых называют " ВТОРЫМИ ПОСРЕДНИКАМИ". Молекулы гормонов очень разнообразны по форме, а " вторые посредники" - нет. Надёжность передачи сигнала обеспечивает очень высокое сродство гормона к своему белку-рецептору. Что такое посредники, которые участвуют во внутриклеточной передаче гуморальных сигналов? Это циклические нуклеотиды (цАМФ и цГМФ), инозитолтрифосфат, кальций-связывающий белок - кальмодулин, ионы кальция, ферменты, участвующие в синтезе циклических нуклеотидов, а также протеинкиназы - ферменты фосфорилирования белков. Все эти вещества участвуют в регуляции активности отдельных ферментных систем в клетках-мишенях. Разберем более подробно механизмы действия гормонов и внутриклеточных посредников. Существует два главных способа передачи сигнала в клетки-мишени от сигнальных молекул с мембранным механизмом действия: 1. АДЕНИЛАТЦИКЛАЗНАЯ (ИЛИ ГУАНИЛАТЦИКЛАЗНАЯ) СИСТЕМЫ 2. ФОСФОИНОЗИТИДНЫЙ МЕХАНИЗМ АДЕНИЛАТЦИКЛАЗНАЯ СИСТЕМА. Основные компоненты: мембранный белок-рецептор, G-белок, фермент аденилатциклаза, гуанозинтрифосфат, протеинкиназы. Кроме того, для нормального функционирования аденилатциклазной системы, требуется АТФ. Схема аденилатциклазной системы представлена на рисунке: Как видно из рисунка, белок-рецептор, G-белок, рядом с которым располагаются ГТФ и фермент (аденилатциклаза) встроены в мембрану клетки. До момента действия гормона эти компоненты находятся в диссоциированнном состоянии, а после образования комплекса сигнальной молекулы с белком-рецептором происходят изменения конформации G-белка. В результате одна из субъединиц G-белка приобретает способность связываться с ГТФ. Комплекс “G-белок-ГТФ” активирует аденилатциклазу. Аденилатциклаза начинает активно превращать молекулы АТФ в ц-АМФ. ц-АМФ обладает способностью активировать особые ферменты - протеинкиназы, которые катализируют реакции фосфорилирования различных белков с участием АТФ. При этом в состав белковых молекул включаются остатки фосфорной кислоты. Главным результатом этого процесса фосфорилирования является изменение активности фосфорилированного белка. В различных типах клеток фосфорилированию в результате активации аденилат-циклазной системы подвергаются белки с разной функциональной активностью. Например, это могут быть ферменты, ядерные белки, мембранные белки. В результате реакции фосфорилирования белки могут становятся функционально активными или неактивными. Такие процессы будут приводить к изменениям скорости биохимических процессов в клетке-мишени. Активация аденилатциклазной систтемы длится очень короткое время, потому что G-белок после связывания с аденилатциклазой начинает проявлять ГТФ-азную активность. После гидролиза ГТФ G-белок восстанавливает свою конформацию и перестает активировать аденилатциклазу. В результате прекращается реакция образования цАМФ. Кроме участников аденилатциклазной системы в некоторых клетках-мишенях имеются белки-рецепторы, связанные с G-белками, которые приводят к торможению аденилатциклазы. При этом комплекс “GTP-G-белок” ингибирует аденилатциклазу. Когда останавливается образование цАМФ, реакции фосфорилирования в клетке прекращаются не сразу: пока продолжают существовать молекулы цАМФ - будет продолжаться и процесс активации протеинкиназ. Для того, чтобы прекратить действие цАМФ, в клетках существует специальный фермент - фосфодиэстераза, который катализирует реакцию гидролиза 3', 5'-цикло-АМФ до АМФ. Некоторые вещества, обладающие ингибирующим действием на фосфодиэстеразу, (например, алкалоиды кофеин, теофиллин), способствуют сохранению и увеличению концентрации цикло-АМФ в клетке. Под действием этих веществ в организме продолжительность активации аденилатциклазной системы становится больше, то есть усиливается действие гормона. Кроме аденилат-циклазной или гуанилатциклазной систем существует также механизм передачи информации внутри клетки-мишени с участием ионов кальция и инозитолтрифосфата. Инозитолтрифосфат -это вещество, которое является производным сложного липида - инозитфосфатида. Оно образуется в результате действия специального фермента - фосфолипазы “С”, который активируется в результате конформационных изменений внутриклеточного домена мембранного белка-рецептора. Этот фермент гидролизует фосфоэфирную связь в молекуле фосфатидил-инозитол-4, 5-бисфосфата и в результате образуются диацилглицерин и инозитолтрифосфат. Известно, что образование диацилглицерина и инозитолтрифосфата приводит к увеличению концентрации ионизированного кальция внутри клетки. Это приводит к активации многих кальций-зависимых белков внутри клетки, в том числе активируются различные протеинкиназы. И здесь, как и при активации аденилатциклазной системы, одной из стадий передачи сигнала внутри клетки является фосфорилирование белков, которое в приводит к физиологическому ответу клетки на действие гормона. В работе фосфоинозитидного механизма передачи сигналов в клетке-мишени принимает участие специальный кальций-связывающий белок - кальмодулин. Это низкомолекулярный белок (17 кДа), на 30% состоящий из отрицательно заряженных аминокислот (Глу, Асп) и поэтому способный активно связывать Са+2. Одна молекула кальмодулина имеет 4 кальций-связывающих участка. После взаимодействия с Са+2 происходят конформационные изменения молекулы кальмодулина и комплекс “Са+2-кальмодулин” становится способным регулировать активность (аллостерически угнетать или активировать) многие ферменты - аденилатциклазу, фосфодиэстеразу, Са+2, Мg+2-АТФазу и различные протеинкиназы. В разных клетках при воздействии комплекса “Са+2-кальмодулин” на изоферменты одного и того же фермента (например, на аденилатциклазу разного типа) в одних случаях наблюдается активация, а в других - ингибирование реакции образования цАМФ. Такие различные эффекты происходят потому, что аллостерические центры изоферментов могут включать в себя различные радикалы аминокислот и их реакция на действие комплекса Са+2-кальмодулин будет отличаться. Таким образом, в роли " вторых посредников" для передачи сигналов от гормонов в клетках-мишенях могут быть: - Циклические нуклеотиды (ц-АМФ и ц-ГМФ); - Ионы Са; - Комплекс “Са-кальмодулин”; - Диацилглицерин; - Инозитолтрифосфат Механизмы передачи информации от гормонов внутри клеток-мишеней с помощью перечисленных посредников имеют общие черты: 1. одним из этапов передачи сигнала является фосфорилирование белков 2. прекращение активации происходит в результате специальных механизмов, инициируемых самими участниками процессов, - существуют механизмы отрицательной обратной связи. Гормоны являются основными гуморальными регуляторами физиологических функций организма, и в настоящее время хорошо известны их свойства, процессы биосинтеза и механизмы действия. Признаки, по которым гормоны отличаются от других сигнальных молекул: 1. Синтез гормонов происходит в особых клетках эндокринной системы. При этом синтез гормонов является основной функцией эндокринных клеток. 2. Гормоны секретируются в кровь, чаще в венозную, иногда в лимфу. Другие сигнальные молекулы могут достигать клеток-мишеней без секреции в циркулирующие жидкости. 3. Телекринный эффект (или дистантное действие) - гормоны действуют на клетки-мишени на больщом расстоянии от места синтеза. Гормоны являются высокоспецифичными веществами по отношению к клеткам-мишеням и обладают очень высокой биологической активностью. ХИМИЧЕСКАЯ СТРУКТУРА ГОРМОНОВ. Строение гормонов бывает разным. В настоящее время описано и выделено около 160 различных гормонов из разных многоклеточных организмов. По химическому строению гормоны можно классифицировать по трем классам: 1. Белково-пептидные гормоны; 2. Производные аминокислот; 3. Стероидные гормоны. К первому классу относятся гормоны гипоталамуса и гипофиза (в этих железах синтезируются пептиды и некоторые белки), а также гормоны поджелудочной и паращитовидной желез и один из гормонов щитовидной железы. Ко второму классу относятся амины, которые синтезируются в мозговом слое надпочечников и в эпифизе, а также иод-содержащие гормоны щитовидной железы. Третий класс - это стероидные гормоны, которые синтезируются в коре надпочечников и в половых железах. По количеству углеродных атомов стероиды отличаются друг от друга: С21 - гормоны коры надпочечников и прогестерон; С19 - мужские половые гормоны - андрогены и тестостерон; С18 - женские половые гормоны - эстрогены. Общим для всех стероидов является наличие стеранового ядра, которое представлено на рисунке.
МЕХАНИЗМЫ ДЕЙСТВИЯ ЭНДОКРИННОЙ СИСТЕМЫ.
Эндокринная система - совокупность желез внутренней секреции и некоторых специализированных эндокринных клеток в составе тканей, для которых эндокринная функция не является единственной (например, поджелудочная железа обладает не только эндокринной, но и экзокринной функциями). Любой гормон является одним из ее участников и управляет определенными метаболическими реакциями. При этом внутри эндокринной системы существуют уровни регуляции - одни железы обладают способностью управлять другими.
ОБЩАЯ СХЕМА РЕАЛИЗАЦИИ ЭНДОКРИННЫХ ФУНКЦИЙ В ОРГАНИЗМЕ. Данная схема включает в себя высшие уровни регуляции в эндокринной системе - гипоталамус и гипофиз, вырабатывающие гормоны, которые сами влияют на процессы синтеза и секреции гормонов других эндокринных клеток. Из этой же схемы видно, что скорость синтеза и секреции гормонов может изменяться также под действием гормонов из других желез или в результате стимуляции негормональными метаболитами. Мы видим также наличие отрицательных обратных связей (-) - торможение синтеза и(или) секреции после устранения первичного фактора, вызвавшего ускорение продукции гормона. В результате содержание гормона в крови поддерживается на определенном уровне, который зависит от функционального состояния организма. Кроме того, организм обычно создает небольшой резерв отдельных гормонов в крови (на представленной схеме этого не видно). Существование такого резерва возможно потому, что в крови многие гормоны находятся в связанном со специальными транспортными белками состоянии. Например, тироксин связан с тироксин-связывающим глобулином, а глюкокортикостероиды - с белком транскортином. Две формы таких гормонов - связанная с транспортными белками и свободная - находятся в крови в состоянии динамического равновесия. Это значит, что при разрушении свободных форм таких гормонов будет происходить диссоциация связанной формы и концентрация гормона в крови будет поддерживаться на относительно постоянном уровне. Таким образом, комплекс какого-либо гормона с транспортным белком может рассматриваться как резерв этого гормона в организме. Один из самых важных вопросов - это вопрос о том, какие изменения метаболических процессов наблюдаются под действием гормонов. Назовем этот раздел: ЭФФЕКТЫ, КОТОРЫЕ НАБЛЮДАЮТСЯ В КЛЕТКАХ-МИШЕНЯХ ПОД ВЛИЯНИЕМ ГОРМОНОВ. Очень важно, что гормоны не вызывают никаких новых метаболических реакций в клетке-мишени. Они лишь образуют комплекс с белком-рецептором. В результате передачи гормонального сигнала в клетке-мишени происходит включение или выключение клеточных реакций, обеспечивающих клеточный ответ. При этом в клетке-мишени могут наблюдаются следующие основные эффекты: 1) Изменение скорости биосинтеза отдельных белков (в том числе белков-ферментов); 2) Изменение активности уже существующих ферментов (например, в результате фосфорилирования - как уже было показано на примере аденилатциклазной системы; 3) Изменение проницаемости мембран в клетках-мишенях для отдельных веществ или ионов (например, для Са+2). Уже было сказано о механизмах узнавания гормонов - гормон взаимодействует с клеткой-мишенью только при наличии специального белка-рецептора, (строение рецепторов и их локализация в клетке уже разбирались). Добавим, что связывание гормона с рецептором зависит от физико-химических параметров среды - от рН и концентрации различных ионов. Особое значение имеет количество молекул белка-рецептора на наружной мембране или внутри клетки-мишени. Оно изменяется в зависимости от физиологического состояния организма, при заболеваниях или под влиянием лекарственных средств. А это означает, что при разных условиях и реакция клетки-мишени на действие гормона будет различной. Разные гормоны обладают различными физико-химическими свойствами и от этого зависит местонахождение рецепторов для определенных гормонов. Принято различать два механизма взаимодействия гормонов с клетками-мишенями: - мембранный механизм - когда гормон связывается с рецептором на поверхности наружной мембраны клетки-мишени; - внутриклеточный механизм - когда рецептор для гормона находится внутри клетки, т.е. в цитоплазме или на внутриклеточных мембранах. Гормоны обладающие мембранным механизмом действия: - все белковые и пептидные гормоны, а также амины (адреналин, норадреналин); Внутриклеточным механизмом действия обладают: - стероидные гормоны и производные аминокислот - тироксин и трийодтиронин. Передача гормонального сигнала на клеточные структуры происходит по одному из механизмов. Например, через аденилатциклазную систему или с участием Са+2 и фосфоинозитидов. Это справедливо для всех гормонов с мембранным механизмом действия. Но стероидные гормоны с внутриклеточным механизмом действия, которые обычно регулируют скорость биосинтеза белков и имеют рецептор на поверхности ядра клетки-мишени, не нуждаются в дополнительных посредниках в клетке. Особенности строения белков-рецепторов для стероидов. Наиболее изученным является рецептор для гормонов коры надпочечников - глюкокортикостероидов(ГКС). В этом белке имеется три функциональных участка: 1 - для связывания с гормоном (С-концевой) 2 - для связывания с ДНК (центральный) 3 - антигенный участок, одновременно способный модулировать функцию промотора в процессе транскрипции (N-концевой). Функции каждого участка такого рецептора ясны из их названий. Очевидно, что такое строение рецептора для стероидов позволяет им влиять на скорость транскрипции в клетке. Это подтверждается тем, что под действием стероидных гормонов избирательно стимулируется (или тормозится) биосинтез некоторых белков в клетке. В этом случае наблюдается ускорение (или замедление) образования мРНК. В результате изменяется количество синтезируемых молекул определенных белков (часто - ферментов) и меняется скорость метаболических процессов. БИОСИНТЕЗ и СЕКРЕЦИЯ ГОРМОНОВ РАЗЛИЧНОГО СТРОЕНИЯ Белково-пептидные гормоны. В процессе образования белковых и пептидных гормонов в клетках эндокринных желез происходит образование полипептида, не обладающего гормональной активностью. Но такая молекула в своем составе имеет фрагмент(ы), содержащий(е) аминокислотную последовательность данного гормона. Такая белковая молекула называется пре-про-гормоном и имеет в своем составе (обычно на N-конце) структуру, которая называется лидерной или сигнальной последовательностью (пре-). Эта структура представлена гидрофобными радикалами и нужна для прохождения этой молекулы от рибосом через липидные слои мембран внутрь цистерн эндоплазматического ретикулума (ЭПР). При этом, во время перехода молекулы через мембрану в результате ограниченного протеолиза лидерная (пре-) последовательность отщепляется и внутри ЭПР оказывается прогормон. Затем через систему ЭПР прогормон транспортируется в комплекс Гольджи и здесь заканчивается созревание гормона. Вновь в результате гидролиза под действием специфических протеиназ отщепляется оставшийся (N-концевой) фрагмент (про-участок). Образованная молекула гормона, обладающая специфической биологической активностью поступает в секреторные пузырьки и накапливается до момента секреции. При синтезе гормонов из числа сложных белков гликопротеинов (например, фолликулостимулирующего (ФСГ) или тиреотропного (ТТГ) гормонов гипофиза) в процессе созревания происходит включение углеводного компонента в структуру гормона. Может происходить и внерибосомальный синтез. Так синтезируется трипептид тиролиберин (гормон гипоталамуса). Гормоны - производные аминокислот Из тирозина синтезируются гормоны мозгового слоя надпочечников АДРЕНАЛИН и НОРАДРЕНАЛИН, а также ЙОДСОДЕРЖАЩИЕ ГОРМОНЫ ЩИТОВИДНОЙ ЖЕЛЕЗЫ. В ходе синтеза адреналина и норадреналина тирозин подвергается гидроксилированию, декарбоксилированию и метилированию с участием активной формы аминокислоты метионина. В щитовидной железе происходит синтез йодсодержащих гормонов трийодтиронина и тироксина (тетрайодтиронина). В ходе синтеза происходит йодирование фенольной группы тирозина. Особый интерес представляет метаболизм иода в щитовидной железе. Молекула гликопротеина тиреоглобулина (ТГ) имеет молекулярную массу более 650 кДа. При этом в составе молекулы ТГ около 10% массы - углеводы и до 1% - йод. Это зависит от количества иода в пище. В полипептиде ТГ - 115 остатков тирозина, которые иодируются окисленным с помощью специального фермента - тиреопероксидазы - йодом. Эта реакция называется органификацией йода и происходит в фолликулах щитовидной железы. В результате из остатков тирозина образуются моно- и ди-иодтирозин. Из них примерно 30% остатков в результате конденсации могутпревратитьться в три- и тетра- иодтиронины. Конденсация и иодирование идут с участием одного и того же фермента - тиреопероксидазы. Дальнейшее созревание гормонов щитовидной железы происходит в железистых клетках - ТГ поглощается клетками путем эндоцитоза и образуется вторичная лизосома в результате слияния лизосомы с поглощенным белком ТГ. Протеолитические ферменты лизосом обеспечивают гидролиз ТГ и образование Т3 и Т4, которые выделяются во внеклеточное пространство. А моно- и дииодтирозин деиодируются с помощью специального фермента деиодиназы и иод повторно может подвергаться органификации. Для синтеза тиреоидных гормонов характерным является механизм торможения секреции по типу отрицательной обратной связи (Т3 и Т4 угнетают выделение ТТГ). Стероидные гормоны. Стероидные гормоны синтезируются из холестерина (27 углеродных атомов), а холестерин синтезируется из ацетил-КоА.
Холестерин превращается в стероидные гормоны в результате следующих реакций: - отщепление бокового радикала - образование дополнительных боковых радикалов в результате реакции гидроксилирования с помощью специальных ферментов монооксигеназ (гидроксилаз) - чаще всего в 11-м, 17-м, и 21-м положениях (иногда в 18-м). На первом этапе синтеза стероидных гормонов сначала образуются предшественники (прегненолон и прогестерон), а затем другие гормоны (кортизол, альдостерон, половые гормоны). Из кортикостероидов могут образоваться альдостерон, минералокортикоиды.
СЕКРЕЦИЯ ГОРМОНОВ.
Регулируется со стороны ЦНС. Синтезированные гормоны накапливаются в секреторных гранулах. Под действием нервных импульсов или под влиянием сигналов из других эндокринных желез (тропные гормоны) в результате экзоцитоза происходит дегрануляция и выход гормона в кровь. Механизмы регуляции в целом были представлены в схеме механизма реализации эндокринной функции.
ТРАНСПОРТ ГОРМОНОВ. Транспорт гормонов определяется их растворимостью. Гормоны, имеющие гидрофильную природу (например, белково-пептидные гормоны) обычно транспортируются кровью в свободном виде. Стероидные гормоны, йодсодержащие гормоны щитовидной железы транспортируются в виде комплексов с белками плазмы крови. Это могут быть специфические транспортные белки (транспортные низкомолекулярные глобулины, тироксинсвязывающий белок; транспортирующий кортикостероиды белок транскортин) и неспецифический транспорт (альбумины). Уже говорилось о том, что концентрация гормонов в кровяном русле очень низка. И может меняться в соответствии с физиологическим состоянием организма. При снижении содержания отдельных гормонов развивается состояние, характеризуемое как гипофункция соответствующей железы. И, наоборот, повышение содержания гормона - это гиперфункция. Постоянство концентрации гормонов в крови обеспечивается также процессами катаболизма гормонов. КАТАБОЛИЗМ ГОРМОНОВ. Белково-пептидные гормоны подвергаются протеолизу, распадаются до отдельных аминокислот. Эти аминокислоты вступают дальше в реакции дезаминирования, декарбоксилирования, трансаминирования и распадаются до до конечных продуктов: NH3, CO2 и Н2О. Гормоны - производные аминокислот подвергаются окислительному дезаминированию и дальнейшему окислению до СО2 и Н2О. Стероидные гормоны распадаются иначе. В организме нет ферментных систем, которые обеспечивали бы их распад. Что же происходит при их катаболизме? В основном происходит модификация боковых радикалов. Вводятся дополнительные гидроксильные группы. Гормоны становятся более гидрофильными. Образуются молекулы, представляющие собой структуру стерана, у которого в 17-м положении находится кетогруппа. В таком виде продукты катаболизма стероидных половых гормонов выводятся с мочой и называются 17-КЕТОСТЕРОИДЫ. Определение их количества в моче и крови показывает содержание в организме половых гормонов. БИОХИМИЯ КРОВИ. Организм человека имеет специальные системы, которые осуществляют непрерывную связь между органами и тканями и обмен организма продуктами жизнедеятельности с окружающей средой. Одной из таких систем, наряду с интерстициальной жидкостью и лимфой, является кровь. ФУНКЦИИ КРОВИ. 1. Питание тканей и выделение продуктов метаболизма. 2. Дыхание тканей и поддержание кислотно-щелочного баланса и водно-минерального баланса. 3. Транспорт гормонов и других метаболитов. 4. Защита от чужеродных агентов. 5. Регуляция температуры тела путем перераспределения тепла в организме. Клеточные элементы крови находятся в жидкой среде - плазме крови. Если свежевзятую кровь оставить в стеклянной посуде при комнатной температуре (200С), то через некоторое время образуется кровяной сгусток (тромб), после формирования которого останется жидкость желтого цвета - сыворотка крови. Она отличается от плазмы крови тем, что в ней нет фибриногена и некоторых белков (факторов) системы свертывания крови. В основе свертывания крови лежит превращение фибриногена в нерастворимый фибрин. В нитях фибрина запутываются эритроциты. Нити фибрина можно получить путем длительного перемешивания свежевзятой крови, наматывая на палочку образующийся фибрин. Так можно получить дефибринированную кровь. Для получения цельной крови, пригодной для переливания больному, способной храниться длительное время, в емкость для взятия крови необходимо добавить антикоагулянты (вещества, препятствующие свертыванию крови). Масса крови в сосудах человека составляет примерно 20% от массы тела. 55% массы крови составляет плазма, остальная часть приходится - форменные элементы плазмы крови (эритроциты, лейкоциты, лимфоциты, тромбоциты). СОСТАВ ПЛАЗМЫ КРОВИ: 90% - вода 6-8% - белки 2% - органические небелковые соединения 1% - неорганические соли БЕЛКОВЫЕ КОМПОНЕНТЫ ПЛАЗМЫ КРОВИ Методом высаливания можно получить три фракции белков плазмы крови: альбумины, глобулины, фибриноген. Электрофорез на бумаге позволяет разделить белки плазмы крови на 6 фракций: Альбумины - 54-62% Глобулины: a1-глобулины 2, 5-5% a2-глобулины 8, 5-10% b-глобулины 12-15% g-глобулины 15, 5-21% фибриноген (остается на старте) - от 2 до 4%. Современные методы позволяют получить свыше 60 индивидуальных белков плазмы крови. Количественные соотношения между белковыми фракциями постоянны у здорового человека. Иногда нарушаются количественные соотношения между различными фракциями плазмы крови. Это явление называется ДИСПРОТЕИНЕМИЯ. Бывает, что содержание общего белка плазмы при этом не нарушается. Иногда содержание общего белка плазмы понижается. Такое явление известно как ГИПОПРОТЕИНЕМИЯ. Может развиться: а) при длительном голодании; б) когда есть патология почек (потеря белка с мочой). Реже, но иногда встречается ГИПЕРПРОТЕИНЕМИЯ - повышение содержания белка в плазме выше, чем 80г/л. Такое явление характерно для состояний, при которых происходит значительные потери жидкости организмом: неукротимая рвота, профузный понос (при некоторых тяжелых инфекционных заболеваниях: холера, тяжелая форма дизентeрии). ХАРАКТЕРИСТИКА ОТДЕЛЬНЫХ БЕЛКОВЫХ ФРАКЦИЙ. АЛЬБУМИНЫ Альбумины – простые низкомолекулярные гидрофильные белки. В молекуле альбумина содержится 600 аминокислот. Молекулярная масса 67 кДа. Альбумины, как и большинство других белков плазмы крови, синтезируются в печени. Примерно 40% альбуминов находится в плазме крови, остальное количество - в интерстициальной жидкости и в лимфе. ФУНКЦИИ АЛЬБУМИНОВ Определяются их высокой гидрофильностью и высокой концентрацией в плазме крови. 1. Поддержание онкотического давления плазмы крови. Поэтому при уменьшении содержания альбуминов в плазме падает онкотическое давление, и жидкость выходит из кровяного русла в ткани. Развиваются " голодные" отеки. Альбумины обеспечивают около 80% онкотического давления плазмы. Именно альбумины легко теряются с мочой при заболеваниях почек. Поэтому они играют большую роль в падении онкотического давления при таких заболеваниях, что приводит к развитию «почечных» отеков. 2. Альбумины – это резерв свободных аминокислот в организме, образующихся в результате протеолитического расщепления этих белков. 3. Транспортная функция. Альбумины транспортируют в крови многие вещества, особенно такие, которые плохо растворимы в воде: свободные жирные кислоты, жирорастворимые витамины, стероиды, некоторые ионы (Ca2+, Mg2+). Для связывания кальция в молекуле альбумина имеются специальные кальцийсвязывающие центры. В комплексе с альбуминами транспортируются многие лекарственные препараты, например, ацетилсалициловая кислота, пенициллин. ГЛОБУЛИНЫ В отличие от альбуминов глобулины не растворимы в воде, а растворимы в слабых солевых растворах. a1-ГЛОБУЛИНЫ В эту фракцию входят разнообразные белки. a1-глобулины имеют высокую гидрофильность и низкую молекулярную массу - поэтому при патологии почек легко теряются с мочой. Однако их потеря не оказывает существенного влияния на онкотическое давление крови, потому что их содержание в плазме крови невелико. Функции a1-глобулинов 1. Транспортная. Транспортируют липиды, при этом образуют с ними комплексы - липопротеины. Среди белков этой фракции есть специальный белок, предназначенный для транспорта гормона щитовидной железы тироксина - тироксин-связывающий белок. 2. Участие в функционировании системы свертывания крови и системы комплемента - в составе этой фракции находятся также некоторые факторы свертывания крови и компоненты системы комплемента. 3. Регуляторная функция. Некоторые белки фракции a1-глобулинов яляются эндогенными ингибиторами протеолитических ферментов. Наиболее высока в плазме концентрация a1-антитрипсина. Содержание его в плазме от 2 до 4 г/л (очень высокое), молекулярная масса - 58-59 кДа. Главная его функция - угнетение эластазы - фермента, гидролизующего эластин (один из основных белков соединительной ткани). a1-антитрипсин также является ингибитором протеаз: тромбина, плазмина, трипсина, химотрипсина и некоторых ферментов системы свертывания крови. Количество этого белка увеличивается при воспалительных заболеваниях, при процессах клеточного распада, уменьшается при тяжелых заболеваниях печени. Это уменьшение - результат нарушения синтеза a1-антитрипсина, и связано оно с избыточным расщеплением эластина. Существует врожденная недостаточность a1-антитрипсина. Считают, что недостаток этого белка способствует переходу острых заболеваний в хронические. К фракции a1-глобулинов относят также a1-антихимотрипсин. Он угнетает химотрипсин и некоторые протеиназы форменных элементов крови. a2-ГЛОБУЛИНЫ. Высокомолекулярные белки. Эта фракция содержит регуляторные белки, факторы свертывания крови, компоненты системы компемента, транспортные белки. Сюда относится и церулоплазмин. Этот белок имеет 8 участков связывания меди. Он является переносчиком меди, а также обеспечивает постоянство содержания меди в различных тканях, особенно в печени. При наследственном заболевании - болезни Вильсона - уровень церулоплазмина понижается. Вследствие этого повышается концентрация меди в мозге и печени. Это проявляется развитием неврологической симптоматики, а также циррозом печени. Гаптоглобины. Содержание этих белков составляет приблизительно 1/4 часть от всех a2-глобулинов. Гаптоглобин образует специфические комплексы с гемоглобином, освобождающимся из эритроцитов при внутрисосудистом гемолизе. Вследствие высокой молекулярной массы этих комплексов они не могут выводиться почками. Это предотвращает потерю железа организмом. Комплексы гемоглобина с гаптоглобином разрушаются клетками ретикуло-эндотелиальной системы (клетки системы мононуклеарных фагоцитов), после чего глобин расщепляется до аминокислот, гем разрушается до билирубина и экскретируется желчью, а железо остается в организме, и может быть реутилизировано. К этой же фракции относится и a2-макроглобулин. Молекулярная масса этого белка 720 кДа, концентрация в плазме крови 1.5-3 г/л. Он является эндогенным ингибитором протеиназ всех классов, а также связывает гормон инсулин. Время полужизни a2-макроглобулина очень малое - 5 минут. Это универсальный “чистильщик” крови, комплексы “a2-макроглобулин-фермент” способны сорбировать на себе иммунные пептиды, например, интерлейкины, факторы роста, фактор некроза опухолей, и выводить их из кровотока. С1-ингибитор - гликопротеид, является основным регуляторным звеном в классическом пути активации комплемента (КПК), способен угнетать плазмин, калликреин. При недостатке С1-ингибитора развивается ангионевротический отек. B-ГЛОБУЛИНЫ К этой фракции относятся некоторые белки системы свертывания крови и подавляющее большинство компонентов системы активации комплемента (от С2 до С7). Основу фракции b-глобулинов составляют Липопротеины Низкой Плотности (ЛПНП) (Подробнее о липопротеинах: смотрите лекции “Метаболизм липидов»). C-реактивный белок. Содержится в крови здоровых людей в очень низких концентрациях, менее 10 мг/л. Его функция неизвестна. Концентрация С-реактивного белка значительно увеличивается при острых воспалительных заболеваниях. Поэтому С-реактивный белок называют белком " острой фазы" (к белкам острой фазы относятся также альфа-1-антитрипсин, гаптоглобин). гамма-ГЛОБУЛИНЫ В этой фракции содержатся в основном АНТИТЕЛА - белки, синтезируемые в лимфоидной ткани и в клетках РЭС, а также некоторые компоненты системы комплемента. Функция антител - защита организма от чужеродных агентов (бактерии, вирусы, чужеродные белки), которые называются АНТИГЕНАМИ. Главные классы антител в крови: - иммуноглобулины G (IgG) - иммуноглобулины M (IgM) - иммун |
Последнее изменение этой страницы: 2017-03-17; Просмотров: 385; Нарушение авторского права страницы