Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Уравнение Эйнштейна-Смолуховского для расчета величины среднего сдвига частиц при броуновском движении.
Количественной характеристикой броуновского движения принято считать средний сдвиг Dх частицы за время t, т. е. наблюдаемую проекцию отрезка прямой, соединяющей начальную точку движения (при t = 0), с положением частицы в момент t , на горизонтальную плоскость (рис. 7.1).
Рис. 7.1. Средний сдвиг частицы при броуновском движении
Поскольку перемещение каждой частицы случайно, среднее арифметическое смещение всех частиц при достаточно большом их числе оказывается равным нулю (в отсутствие направленного потока жидкости или градиента концентрации дисперсной фазы). Однако частицы движутся, и каждая из них уходит от исходного положения. Поэтому при изучении диффузии производится усреднение таким образом, чтобы смещения в различных направлениях не вычитались, а складывались. А именно, усредняются квадраты проекций смещения. При этом получается предложенная А. Эйнштейном величина, называемая средним квадратичным сдвигом Dх 2. В отличие от реального пути частицы, изменяющего направление до »1020 раз в секунду, усреднённая величина Dх 2 может быть точно вычислена на основании законов статистики. Для сферической частицы с радиусом r она прямо пропорциональна абсолютной температуре Т и времени наблюдения t и обратно пропорциональна коэффициенту Стоксагидродинамического (вязкого) сопротивления среды B = 6 phr: , где К – коэффициент пропорциональности, в соответствии с теорией Эйнштейна равный ( k – константа Больцмана). Отсюда получаем уравнение Эйнштейна – Смолуховскогодля величины среднего квадратичного сдвига или для среднего сдвига . где D - коэффициент диффузии частиц данного вещества в данной среде. 94. Осмотическое давление коллоидных растворов.Осмотический метод определения размеров коллоидных частиц. Т. Грэму при исследовании коллоидных растворов не удалось обнаружить у них осмотического давления. Этот факт он положил в основу деления растворов на коллоидные и истинные. Однако более поздние исследования показали, что и в коллоидных системах можно наблюдать измеримое, хотя и очень малое по величине осмотическое давление. Для истинных растворов в соответствии с законом Вант-Гоффа осмотическое давление p может быть рассчитано по уравнению , где C - молярная концентрация растворённого вещества. В дисперсных системах концентрацию дисперсной фазы принято выражать числом частиц (мицелл), содержащихся в единице объёма. Эта величина называется численной или частичной концентрацией и обозначается n. Выведем соотношение между молярной концентрацией вещества в растворе и числом частиц, из которых оно состоит. Молярная концентрация представляет собой отношение количества вещества в молях к объёму раствора: . Выражая количество молей через число молекул, содержащихся в нём, получим , а так как x / V = n ( n - объёмная концентрация молекул), то . Если же под С подразумевается молярная концентрация коллоидных частиц, тогда n - объёмная концентрация этих частиц, или, иначе, частичная концентрация золя. Поэтому уравнение для осмотического давления коллоидных растворов будет выглядеть так: или , где k – константа Больцмана. Из этого уравнения следует, что осмотическое давление увеличивается с ростом числа частиц в единице объёма даже при постоянной массе дисперсной фазы (с ростом дисперсности, например, при пептизации). Так как при одинаковой массовой концентрации n зависит от объёма частиц, то можно сказать, что осмотическое давление дисперсных (коллоидных) систем обратно пропорционально кубу радиуса их частиц. Таким образом, закон Вант-Гоффа справедлив и для лиозолей. Однако простой расчёт показывает, что при одинаковой массовой концентрации частичные концентрации золей и тем более грубодисперсных систем обычно очень малы по сравнению с концентрацией молекул в истинных растворах. Поэтому в соответствии с выведенным уравнением и осмотическое давление в них должно быть намного меньше, а именно, во столько раз, во сколько раз частица дисперсной фазы больше, чем отдельная молекула или ион. Так, осмотическое давление коллоидных растворов в сотни и тысячи раз меньше, чем у истинных растворов. Столь малые значения очень трудно измерить с необходимой точностью, а в грубодисперсных суспензиях, пастах и эмульсиях осмотическое давление практически отсутствует. Следует, однако, помнить, что речь идёт только об осмотическом давлении, обусловленном частицами дисперсной фазы. Надо учитывать, что в коллоидных растворах и в других дисперсных системах обычно присутствуют растворённые низкомолекулярные вещества – или в виде примесей, или в качестве стабилизаторов. Они тоже вносят свой вклад в общее осмотическое давление, поэтому его реальное значение несколько выше, чем рассчитанное исходя только из концентрации частиц дисперсной фазы. Ещё одной особенностью осмотического давления золей является его непостоянство. Из-за идущих в той или иной степени процессов скрытой коагуляции частичная концентрация всё время уменьшается, что и вызывает снижение p во времени. Низкое осмотическое давление является одной из причин лечебного, в частности, обеззараживающего или вяжущего действия коллоидных лекарственных средств – колларгола, протаргола и т. п. При соприкосновении их с клетками, в том числе с микробными, начинается интенсивный осмотический приток воды внутрь клеток, что приводит к гибели микробов вследствие лизиса. |
Последнее изменение этой страницы: 2017-03-17; Просмотров: 3180; Нарушение авторского права страницы