Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Эмульсии. Классификация,методы получения и стабилизации. Коалесценция. Эмульгаторы. Правило Банкрофта.
Эмульсии - это дисперсные системы с жидкой дисперсионной средой и жидкой дисперсной фазой (тип Ж/Ж). Получают эмульсии как конденсационными, так и диспергационными методами, но чаще применяют диспергирование (механическое или ультразвуковое). Ранее говорилось, что общим условием образования дисперсных систем является практически полная или частичная нерастворимость вещества дисперсной фазы в среде. Поэтому жидкости, образующие различные фазы в эмульсиях, должны сильно различаться по полярности. В связи с этим различают два основных типа эмульсий - прямые, с каплями неполярной жидкости в полярной среде, и обратные, с каплями полярной жидкости в неполярной среде. Наибольшее распространение имеют эмульсии, в которых одна из фаз - вода. В этих случаях вторую фазу образует неполярная или малополярная жидкость, называемая в общем случае маслом (например, растительные масла, а также бензол, хлороформ, и т. п.). Поэтому прямые эмульсии часто называют эмульсиями типа " масло в воде " (М/В), а обратные - типа " вода в масле " (В/М). В общем случае словом " вода" обозначается более полярная жидкость, а словом " масло" - менее полярная, даже если они имеют отличную от воды и масла природу. Так, например, эмульсия ртути в бензоле относится к типу В/М. В зависимости от объёмной концентрации дисперсной фазы эмульсии подразделяют на три класса: разбавленные (концентрация не превышает 0, 1%), концентрированные (0, 1 ¸ 74%) и высококонцентрированные или желатинированные (> 74%), которые по структуре близки к пенам. Разбавленные эмульсии относительно устойчивы, поскольку вероятность столкновения частиц при малой частичной концентрации невелика. Однако столкновение капелек, не защищённых стабилизатором, заканчивается их слиянием ( коалесценцией ). Во многих отношениях поведение разбавленных эмульсий с мелкими каплями близко к поведению лиофобных золей (разрушение при введении электролитов подчиняется правилу Шульце - Гарди, многозарядные ионы вызывают перезарядку, в устойчивых эмульсиях наблюдается заметный электрофорез и т. п.). В промышленности, в быту, а также в качестве лекарственных форм чаще всего используются концентрированные и желатинированные эмульсии. Подавляющее большинство применяемых на практике эмульсий относятся к классу концентрированных, хотя объёмная концентрация дисперсной фазы может в них колебаться в очень широких пределах. Такие эмульсии не могут существовать без стабилизации, так как близко находящиеся друг к другу капли будут часто сталкиваться и коалесцировать, что быстро приведёт к полному расслоению. Граница между двумя классами концентрированных и высококонцентрированных эмульсий определяется тем, что капли дисперсной фазы могут сохранять сферическую форму вплоть до объёмной доли, соответствующей плотной упаковке шаров (74%). Поэтому дальнейшее увеличение концентрации, характерное для высококонцентрированных эмульсий, неизбежно связано с деформацией капель, приводящей к появлению новых свойств. Высококонцентрированные эмульсии готовят при интенсивном механическом воздействии посредством постепенного введения малых объёмов вещества дисперсной фазы в дисперсионную среду, содержащую эффективный эмульгатор, например, желатин. Такие эмульсии представляют собой желеподобные системы, которые обладают даже некоторой упругостью и прочностью (иногда их можно резать ножом). Твёрдообразные свойства таким эмульсиям придаёт ориентированное расположение сольватированных молекул эмульгатора в системе прослоек дисперсионной среды. Эти тонкие прослойки образуют пространственный каркас, ячейки которого заполнены жидкостью дисперсной фазы. Разрушение эмульсий, как и других дисперсных систем, происходит различными путями, из которых в практическом отношении наиболее важны седиментация и коалесценция. Седиментация в эмульсиях, в особенности типа М/В, как правило, проявляется во всплывании частиц дисперсной фазы (например, образование сливок при стоянии молока). Во многих случаях она сопровождается флокуляцией, т. е. собиранием капелек в гроздья, хлопья и т. п. Всплывшие на поверхность капли соприкасаются друг с другом и при определённых условиях могут сливаться, т. е. коалесцировать. Коалесценция является следствием нарушения агрегативной устойчивости и заключается в полном слиянии капелек. Более крупные капли, возникающие при слиянии, в соответствии с законом Стокса всплывают быстрее, что приводит к нарушению и седиментационной устойчивости. В отличие от флокуляции коалесценция необратима. Таким образом, оба вида устойчивости в эмульсиях тесно связаны и взаимно обусловлены. Их нарушение в итоге может привести к полному расслаиванию – разделению эмульсии на два жидких слоя. Поэтому агрегативно устойчивые эмульсии могут быть получены только с применением эффективных стабилизаторов, называемых в данном случае эмульгаторами. В качестве эмульгаторов обычно используются поверхностно-активные вещества (ПАВ) различной природы. Однако возможен ещё один способ стабилизации эмульсий - введением тонкодисперсных порошков, размеры частиц которых намного меньше размеров капель (в десятки и сотни раз). Устойчивость эмульсий характеризуют двумя величинами – 1) временем полного расслаивания столба эмульсии на два слоя или 2) временем жизни (до коалесценции) приведённых в соприкосновение капель дисперсной фазы. В этом случае устойчивость определяется при рассматривании эмульсии под микроскопом. Тип эмульсии, возникающей при механическом диспергировании, в значительной степени зависит от соотношения объёмов жидкостей: жидкость, присутствующая в существенно большем количестве, обычно становится дисперсионной средой. Если объёмное содержание двух жидкостей примерно равно, то, как отмечалось Ребиндером, при диспергировании обычно образуются одновременно эмульсии обоих типов - прямая и обратная. Но после прекращения диспергирования при отстаивании выживает из них та, которая имеет более высокую устойчивость к коалесценции капель и последующему расслаиванию. При этом соотношение стабильности прямой и обратной эмульсий, а, следовательно, и тип эмульсии определяются природой введённого стабилизатора (эмульгатора). Способность поверхностно-активного эмульгатора обеспечивать устойчивость эмульсии того или другого типа определяется энергией взаимодействия его молекул с полярной и неполярной жидкостями. Это отражается в так называемом правиле Банкрофта: при эмульгировании дисперсионной средой становится та жидкость, в которой эмульгатор лучше растворим. В соответствии с этим правилом эмульгаторы с большими числами ГЛБ (гидрофильно-липофильного баланса), такие как, например, олеат натрия или лаурилсульфат натрия, способствуют образованию прямых эмульсий. Наоборот, эмульгаторы с малыми числами ГЛБ (например, олеат кальция, олеиновая кислота) - стабилизируют обратные эмульсии. По-видимому, в механизме стабилизации эмульсий наиболее существенным является наличие адсорбционно-сольватного фактора агрегативной устойчивости. При этом наиболее плотной и обеспечивающей наибольшее расклинивающее давление будет такая структура адсорбционного слоя, при которой бó льшая часть молекулы (или сольватированного иона) эмульгатора будет находиться на внешней поверхности капель. Это подтверждается и способностью к стабилизации эмульсий тонкодисперсными порошками. При этом порошковые эмульгаторы тоже подчиняются правилу Банкрофта, а именно, защищают от коалесценции капли той жидкости, которая хуже смачивает их частицы, тогда как лучше смачивающая жидкость становится дисперсионной средой. Так, при стабилизации эмульсии, состоящей из капель воды в масляной среде, сажей, частицы сажи размещаются на поверхности капель таким образом, что бó льшая их часть оказывается погружённой в масло. Из-за худшего смачивания вода оттесняется из прослоек между частицами сажи, в результате чего при столкновении капли воды не могут прийти в непосредственный контакт. Соприкасаются только частицы сажи, образующие достаточно прочную оболочку вокруг капель, в результате чего происходит взаимное отталкивание капель воды. И, наоборот, гидрофильный порошок, например, мел, защищает подобной " бронёй" капли масляной фазы в водной дисперсионной среде в эмульсиях противоположного типа. Стабилизация эмульсий порошками может рассматриваться в качестве простейшего и очень наглядного примера структурно-механического барьера как фактора стабилизации дисперсий. Другим важным фактором агрегативной устойчивости эмульсий является образование двойного электрического слоя на поверхности капель в результате стабилизации ионогенными ПАВ. Следует только подчеркнуть, что этот фактор является наиболее действенным в случае эмульсий типа М/В, где полярные ионогенные группы эмульгатора при адсорбции оказываются на внешней поверхности капель. При этом сталкивающиеся капли в первую очередь испытывают взаимное отталкивание одноимённо заряженных противоионов. ДЭС, характеризующийся значительным электрокинетическим потенциалом, таким образом, является существенным дополнением к структурно-механическому барьеру. Если же эмульсия относится к типу В/М, то ДЭС формируется на внутренней поверхности капель и его роль в отталкивании частиц будет намного меньше, так как электрические силы проявляются на малых расстояниях. 100. Методы определения типа эмульсий. Обращение фаз эмульсий. Применение эмульсий в фармации. Замена эмульгатора или изменение его природы в результате химических реакций может привести к обращению фаз эмульсии, особенно если объёмное соотношение её фаз близко к 1: 1. Например, если к эмульсии оливкового масла в воде (М/В), стабилизированный стеаратом натрия, добавить раствор хлорида кальция, то эмульгатор переходит в кальциевую форму: 2 C17H35COONa + CaCl2 = (C17H35COO)2Ca + 2 NaCl. Возникший стеарат кальция содержит два больших углеводородных радикала, которые с двух сторон экранируют полярный центр, состоящий из иона Са2+, соединённого с двумя карбоксильными группами. Такое кальциевое мыло значительно лучше растворимо в масле, чем в воде. В результате при интенсивном встряхивании эмульсия обращается, т. е. масляная фаза становится дисперсионной средой, а водная – дисперсной фазой. Метод окрашивания. К небольшому количеству эмульсии добавляется водо- или жирорастворимый краситель. После перемешивания капля эмульсии рассматривается под микроскопом. По тому, какая фаза - капельки дисперсной фазы или среда - окрашивается данным красителем, делается вывод о типе. Например, если был использован жирорастворимый краситель судан-III, и под микроскопом видно, что он окрасил в красный цвет капли дисперсной фазы, а дисперсионная среда при этом осталась бесцветной, значит, мы имеем дело с эмульсией типа " масло в воде". Метод смачивания гидрофобной поверхности осуществляется нанесением капли исследуемой эмульсии на поверхность парафинированной пластины. С парафином при этом соприкасается дисперсионная среда эмульсии, которая ведёт себя соответственно сродству к нему. А именно, эмульсии типа В/М при этом или полностью растекаются по поверхности, или образуют с ней острый краевой угол смачивания, а эмульсии типа М/В не растекаются и образуют тупой или близкий к прямому краевой угол. Таким образом, рассматривая каплю в плоскости пластинки, можно по краевому углу смачивания сделать заключение о типе эмульсии. Метод разбавления водой. На чистой стеклянной пластинке рядом с каплей исследуемой эмульсии помещается капля дистиллированной воды так, чтобы обе капли пришли в соприкосновение. Эмульсии типа М/В легко смешиваются с водой, так как вода имеет одинаковую природу с дисперсионной средой. При соприкосновении капель воды и прямой эмульсии они быстро сливаются в одну, и происходит разбавление эмульсии. Капля обратной эмульсии долго сохраняет поверхность раздела с каплей воды, так как её неполярная среда не смешивается с водой. Метод электрической проводимости. Эмульсии типа В/М в отличие от прямых практически не проводят электрический ток, так как он может распространяться только по непрерывной дисперсионной среде. Значит, измеряя электрическую проводимость или сопротивление эмульсии, можно сделать заключение о её типе. |
Последнее изменение этой страницы: 2017-03-17; Просмотров: 3816; Нарушение авторского права страницы