Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Дивергенция, её физический смысл и свойства. Формула Остроградского-Гаусса



Пусть векторное поле таково, что существуют частные производные в точке

Определение 5. Дивергенцией поля в точке назывется скалярная величина Если то точка называется источником, а если то называется стоком.

Это определение дивергенции дано в декартовой системе координат. Инвариантное определение будет дано позже. Дивергенция обладает следующими свойствами:

1 (Линейность).

2. Если дифференцируемое в точке скалярное поле, а дифференцируемое в той же точке векторное поле, то в указанной точке имеет место равенство

.

Доказательства этих свойств очевидны и мы рекомендуем провести их самостоятельно. Приводимая ниже формула Остроградского-Гаусса позволяет свести поверхностный интеграл второго рода (поток) к тройному интегралу. Введём сначала следующее понятие.

Определение 6. Говорят, что область односвязна, если любой замкнутый контур можно стянуть в точку, не выходя за пределы области

Например, шар – односвязная область, а шаровое кольцо – нет.

Теорема Остроградского-Гаусса. Пусть замкнутая ограниченная односвязная область и её граница ( в этом случае замкнутая поверхность). Пусть, кроме того, векторное поле непрерывно дифференцируемо в а граница кусочно гладка. Тогда имеет место равенство

Доказательство проведем для случая, когда тело можно одновременно представить в следующих видах

где замкнутые ограниченные квадрируемые области, а все участвующие здесь функции непрерывны в областях соответственно. Введем векторные поля Тогда исходное векторное поле запишется в виде и значит,

Подсчитаем каждый из этих потоков. Начнем с потока

Нормаль на поверхности имеет вид так как угол острый,

так как угол тупой.

Следовательно,

Точно так же находим, что

поэтому

Теорема доказана.

Пример 2 ( Кузнецов Л.А. Типовые расчеты ). Найти поток векторного поля через замкнутую поверхность (нормаль внешняя).

Решение. Воспользуемся формулой Остроградского-Гаусса:

Так как то

Тело ограничено сверху поверхностью эллиптического параболоида, а снизу – поверхностью конуса. Пересечение этих поверхностей находится из системы уравнений

т.е. пересечение является окружностью радиуса 2. Перейдем к цилиндрической системе координат: Будем иметь

Лекции 7-8. Инвариантное определение дивергенции и её физический смысл. Соленоидальное поле. Ориентируемые кривые. Криволинейные интегралы первого и второго рода, их свойства и вычисление. Циркуляция векторного поля. Ротор. Формулы Грина и Стокса. Потенциальное поле и его свойства

 

Данное нами на предыдущей лекции определение дивергенции зависело от системы координат. Перейдем к описанию инвариантного определения дивергенции.

 

1. Инвариантное определение дивергенции и её физический смысл

Пусть векторное поле задано в области и пусть фиксированная точка этой области.

Окружим точку произвольной замкнутой поверхностью а тело с границей Пусть объём тела

Определение 1. Если существует конечный предел

когда поверхность стягивается в точку и этот предел не зависит от выбора поверхности то его называют дивергенцией поля в точке

Нетрудно показать, что это инвариантное определение дивергенции совпадает с ранее данным её определением, если поле дано в декартовой системе координат. Действительно, по теореме Остроградского-Гаусса имеем

Здесь мы воспользовались теоремой о среднем и тем фактом, что при точка Таким образом, инвариантное определение дивергенции совпадает с ранее данным её определением в декартовой системе координат.

Инвариантное определение дивергенции позволяет выяснить ее физический смысл. Пусть поле скоростей движующейся жидкости. Будем считать, что в области нет стоков. Тогда величина есть количество жидкости, отнесённое к объёму (средняя плотность мощности источников в ), а предел этой величины при (т.е. ) есть плотность мощности источников, находящихся в точке


Поделиться:



Последнее изменение этой страницы: 2017-04-12; Просмотров: 706; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь