Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Мгновенный центр скоростей (МЦС)



 

Теорема Эйлера-Шаля доказывает, что любое непоступательное перемещение фигуры в плоскости можно осуществить поворотом вокруг некоторого неподвижного центра. В соответствии с этим легко доказывается, что при плоско-параллельном движении в каждый момент времени существует точка, неизменно связанная с плоской фигурой, скорость которой в этот момент равна нолю. Эту точку называют мгновенным центром скоростей (МЦС). В учебниках эту точку пишут с индексом V, например PV, CV.

При определении положения МЦС скорость любой точки может быть записана: VM=VCV+VMCV, где точка СV выбрана за полюс. Поскольку это МЦС и VCV=0, то скорость любой точки определяется как скорость вращении вокруг мгновенного центра скоростей.

 

 

Из рис. 1.5 видно, что мгновенный центр скоростей лежит в точке пересечения перпендикуляров, проведенных к скоростям точек, при этом всегда справедливо соотношение

 

 

 

 

Рис. 1.5

 

На нижеприведенных рисунках показаны примеры определения положения мгновенного центра скоростей и приведены формулы для расчета скоростей точек.

 

Для рисунка 1.6:

1. СV совпадает с точкой В VB=0. Шатун АВ вращается вокруг точки В

 

2.

 

3. МЦС лежит в «бесконечности»

 

 

4.

 

 

 

Рис. 1.6

 

 

 

Рис. 1.7

 

 

Рис. 1.8

 

здесь VB II VA

В этом случае МЦС находится в “бесконечности”, т.е

 

 

 

Рис. 1.9

 

 

Формулы справедливы при отсутствии проскальзывания в точке СV.

 

 

 

 

 

 

Рис. 1.10

 

Мгновенный центр ускорений (МЦУ)

В учебной литературе доказывается, что при движении фигуры в плоскости в каждый момент времени существует такая точка плоской фигуры, ускорение которой в этот момент равно нолю. Эту точку называют мгновенным центром ускорений (МЦУ). В наших рассуждениях будем обозначать ее буквой Q. Взяв эту точку за полюс, получим формулу для определения ускорения произвольной точки:

 

 

 

Рис. 1.12

 

Угол, который составляет вектор ускорения точки М с линией MQ определится из соотношения:

 

Т.е. у всех точек плоской фигуры этот угол одинаков. Из рис. 1.12 видно, что мгновенный центр ускорений лежит в точке пересечения линий, составляющих угол γ с соответствующими ускорениями точек.

На рис. 1.13-1.15 приведены частные случаи определения положения мгновенного центра ускорений.

 

Рис. 1.13а       Рис. 1.13б  
    Рис. 1.14а       Рис. 1.14б  
    Рис. 1.15а     Рис. 1.15б  

 

 

Сложное движение точки

 

Законы Ньютона сформулированы для движения точки по отношению к инерциальным системам отсчета. Для определения кинематических параметров точки при движении относительно произвольно движущейся системы отсчета вводится теория сложного движения.

 

Сложным называют движение точки по отношению к двум или нескольким системам отсчета.

 

Рисунок 3.1

 

На рисунке 3.1 показаны:

- условно принимаемая за неподвижную система отсчета O1x1y1z1;

- движущаяся относительно неподвижной система отсчета Oxyz;

- точка M, перемещающаяся по отношению к подвижной системе отсчета.

Движение точки M в данном случае является сложным. Её движение по отношению к подвижной системе отсчета называют относительным движением.

 

Движение той точки подвижной системы отсчета, в которой в данный момент находится движущаяся точка, по отношению к неподвижной системе отсчета называют переносным движением. Движение точки M по отношению к неподвижной системе отсчета называют абсолютным движением.

 

По аналогии с этими определениями будут называться относительные, переносные и абсолютные скорости и ускорения точки. Для их обозначения в относительном движении часто всего используется индекс r (relative – относительный) - Vr, ar ; в переносном движении индекс e (entrained - увлекать за собой) - Ve, ae.

 

Рисунок 3.2

 

Ниже приведен пример сложного движения точки - M.

 

На рисунке 3.2, а показан квадрат, вращающийся в плоскости чертежа вокруг неподвижной точки. По стороне квадрата движется точка M. Она участвует в двух движениях, поэтому можно ввести две системы отсчета: неподвижную, например, O1x1y1z1 - по отношению к которой вращается квадрат и подвижную Oxyz , скрепленную с квадратом, по оси Oy которой движется точка M (рисунок 3.2, б).

 

Движение точки M по стороне квадрата (по оси Oy скрепленной с квадратом подвижной системы) является относительным - скорость в этом движении Vr. Вращение точки M вместе с квадратом - переносное движение, скорость в этом движении - Ve. Абсолютное движение является результатом сложения переносного и относительного движений.

 


Поделиться:



Последнее изменение этой страницы: 2017-04-13; Просмотров: 639; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь