Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ТИПОВЫЕ КОМБИНАЦИОННЫЕ ЦИФРОВЫЕ УСТРОЙСТВА



Все известные и вновь создаваемые ЦЭУ любой сложности выполня­ют преобразование совокупности цифровых входных сигналов Л' в выходные сигналы Yи могут быть отнесены к одному из двух основных классов: комбинационные и последовательностные ЦЭУ.

Комбинационными называют ЦЭУ, состояние п выходов которого в любой момент времени полностью определяется совокупностью логичес­ких сигналов, присутствующих на т его информационных входах

Среди комбинационных ЦЭУ, получивших разнообразное примене­ние в информационно-измерительной и вычислительной технике, из­вестны такие устройства, как дешифраторы и шифраторы, мультиплек­соры и демультиплексоры, арифметические и арифметико-логические устройства (АЛУ) и др.

Выходное состояние последовательностного ЦЭУ (конечного автомата) в данный момент времени определяется не только логическими сигналами на его входах, но еще зависит и от порядка (последовательности) их поступления в предыдущие моменты времени. Иными слова­ми, конечные автоматы должны обязательно содержать элементы памя­ти, отражающие всю предысторию поступления логических сигналов и выполненные, например, на триггерах, в то время как комбинационные ЦЭУ могут быть целиком построены только на логических элементах.

Рассмотрим наиболее распространенные типы комбинационных ЦЭУ, которые выпускаются в интегральном исполнении и широко Используются в современной цифровой технике.

Дешифратором (декодером) называют комбинационное ЦЭУ, пред- Означенное для распознавания различных кодовых комбинаций сигналов на его входах В простейшем случае каждой кодовой комбинации на в*одах соответствует активный уровень сигнала только на одном из входов дешифратора. Такой дешифратор может применяться, например для управления работой нескольких исполнительных механизмов. Тогда для включения одного из них на входы дешифратора достаточно подать присвоенный этому механизму цифровой код.

В более общем случае каждой определенной комбинации на т входах дешифратора соответствует «-элементный код на его выходах. Такие дешифраторы иногда называют преобразователями кодов. Они широко используются в вычислительной технике, а также в приборах с цифровой индикацией, например, для управления индикаторами на светоизлучающих диодах. Поскольку десятичные цифры (от 0 до 9) пред­ставляются 4-разрядным двоичным кодом, а стилизованные изображения всех десятичных цифр в известных типах светодиодных индикаторов чаще всего составляют из семи светящихся сегментов, такой дешифратор должен иметь 4 входа, 7 выходов и распознавать только первые десять из 16 возможных входных кодовых комбинаций.

Условное обозначение микросхем дешифраторов на корпусе ИС после номера ее серии имеет первой букву И (для всех цифровых устройств), а второй — букву Д. На, рис.6.20, а представлена схема подключения ТТЛ-дешифратора К514ИД1 для управления семисегментным цифровым индикатором на светодиодах с объединенными катодными выводами. Дешифратор работает обычным образом при высоком уровне сигнала на входе Е Сигнал низкого уровня на этом входе независимо от информации на входах D0 — D3 переводит все выходы дешифратора в состояние логического нуля, в результате чего все светодиоды гаснут.

Шифратором (кодером) называют комбинационное ЦЭУ, преобразу­ющее активные уровни сигналов на его входах в соответствующий код на выходах Из этого определения следует, что шифратор выполняет пре­образование, обратное тому, которое делается дешифратором. В про­стейшем случае шифратор сопоставляет активному уровню на одном из входов n-элементный двоичный выходной код, поэтому количество его выходов всегда меньше, чем входов. Так, шифратор c n-выходами может иметь максимальное количество входов, равное т=2п.


Рис 6.20. Дешифраторы и шифраторы: а — схема подключения ТТЛ-дешиф- рагора К514ИД1; б — ТТЛШ-шифратор КМ555ИВ1

В самом общем случае допускается, что на несколько входов шифра­тора могут одновременно поступать активные уровни, поэтому схему шифратора дополняют так называемым арбитром приоритетов, назначение которого распределить уровни приоритетов по номерам вхо­дов. Шифраторы, допускающие такой режим, называют приорит е т н ы м и. Чаще всего в приоритетных шифраторах наивысшим уровнем приоритета обладает вход с наибольшим номером.

В условном обозначении на корпусе шифратора после номера серии микросхемы записывают буквы ИВ. Например, КМ555ИВ1 (рис.6.20, б) представляет собой приоритетный шифратор с инверсными информаци­онными входами D0 — D7 и тремя инверсными выходами Y0 - Y2. В этом шифраторе наивысшим уровнем приоритета обладает вход D7. Шифратор имеет инверсный вход E1 запрета его работы, при низком уровне сигнала на этом входе шифратор не реагирует на информацион­ные сигналы (обычно вход E1 используют для отключения шифратора в те моменты времени, когда происходит смена входной информации). Два дополнительных инверсных выхода Е0 и GS предназначены для построе­ния на основе ИС КМ555ИВ1 более сложных схем многоразрядных шиф­раторов. На выходе Е0 (разрешения от выхода) появится низкий уровень напряжения, если на всех входах присутствуют высокие уровни. На груп­повом выходе GS будет низкий уровень, если хотя бы на одном из этих входов имеется низкий уровень.

Как правило, построение схемы шифратора сопряжено с наличием значительного количества факультативных условий, соответствующих за­прещенным кодовым комбинациям на его входах. Проиллюстрируем это на примере следующей задачи.

Задача 6.12. Построить схему шифратора с тремя прямыми входами (x3x2x1), в котором единичному уровню на одном из входов на выходах (Y0Y1) сопоставляется двоичный код номера этого входа.

Решение. В условиях задачи определены всего три состояния на входах, когда на каждом из них в отдельности присутствует высокий уровень. Остальные комбинации исключены, что соответствует факу льта­тивным условиям, помеченным в таблице истинности шифратора (рис.6.21, а) буквами Ф. По этой таблице запишем выражение булевых функций на двух выходах шифратора

,

 

где — обозначены единичные слагаемые, соответствующие факультативным наборам.

Рис 6 21 К построению схемы шифратора: а — таблица истинности шифра­тора; 6 кар гы минимизации выходных функций , в — схема шифратора

 

 

Нанесем все единичные и факультативные наборы на карты миними­зации (рис.6.2 б), построенные для выходных функций и Содер­жимое в клетках с факультативными наборами доопределим таким образом, чтобы на картах минимизации получить максимальные раз­меры замкнутых областей при наименьшем количестве этих областей. Окончательно получаем минимизированные выражения, описываю­щие работу шифратора , Схема шифратора на элементах ИЛИ приведена на рис. 6.21, в.

Мультиплексором называют комбинационное ЦЭУ с одним выходом, несколькими информационными и управляющими входами, логическое со­стояние на выходе которого повторяет сигнал на одном из информацион­ных входов в соответствии с заданным цифровым кодом на управляющих входах. Иными словами, мультиплексор коммутирует на свой выход сигнал входа, выбираемого при помощи цифрового кода на управляю­щих входах (режим выбора данных). Если цифровой код на управляющих входах поочередно принимает все возможные комбина­ции, состояние на выходе мультиплексора последовательно (с частотой смены управляющих кодов) повторяет состояние всех его информаци­онных входов (режим мультиплексирования данных). Иногда говорят, что в этом режиме мультиплексор выполняет преобра­зование параллельного двоичного кода на информационных входах в последовательный код на его выходе.

Условное обозначение микросхем мультиплексоров на корпусе пос­ле номера серии имеет буквы КП. Например, К555КП7 представляет собой ТТЛШ-мультиплексор, содержащий три управляющих и 8 информационных входов (мультиплексор 8/1), прямой и инверсный выходы, а также стробирующий вход Е, разрешающий работу мультип­лексора при низком активном уровне сигнала на этом входе. Нетрудно записать выражение закона работы этого мультиплексора

+

Из рассмотрения этого выражения приходим к весьма важному выво­ду, что мультиплексор представляет собой универсальный прибор, с по­мощью которого можно довольно просто строить комбинационные ЦЭУ, реализующие произвольные булевы функции. Так, для реализации на основе мультиплексора 8/1 любой булевой функции трех переменных на информационные входы D0—D7 следует подать требуемые логические уровни, которые эта булева функция принимает соответственно на набо­рах с номерами 0—7, а его управляющие входы — использовать в, качес­тве информационных входов ЦЭУ. Включение мультиплексора 8/1 для реализации, например, булевой функции F(x2, x1, х0), таблица истинности которой ранее была приведена на рис.6.1, показано на рис.6.22, а.

а) б) Рис.6.22. Мультиплексоры и демультиплексоры: а -- реализация булевой Функции F(x2, x1, х0), (см.рис.6.1) на мультиплексоре К555КП7; б —условное °бозначение демультиплексора 1/8

 

Демультиплексором называют комбинационное ЦЭУ с несколькими выходами и управляющими входами, коммутирующие сигнал на един­ственном информационном входе на один из выходов в соответствии с цифровым кодом на управляющих входах. Таким образом, демультиплексор выполняет преобразование, обратное мультиплексированию. При циклическом переборе на управляющих входах всех возможных кодовых комбинаций демультиплексор выполняет преобразование пос­ледовательного двоичного кода на его информационном входе в парал­лельный код, который возникает на выходах по окончании полного цикла этого перебора.

Изображение демультиплексора 1/8 стремя управляющими входами F(x2, x1, х0),, информационным входом D и 8 выходами приведено на рис. 6.22, 6. В качестве демультиплексоров чаще всего используются дешифраторы, имеющие вход разрешения Е. Для того чтобы такой дешифратор работал в режиме демультиплексора, управляющие сигна­лы демультиплексора подают на информационные входы дешифрато­ра, а информационный сигнал — на вход разрешения Е.

Вопрос 6.3. На входе Е1 шифратора КМ555ИВ1 установлен единич­ный уровень сигнала. Возможно ли появление активного уровня сигна­ла только на одном из его выходов Y0— Y2, если активный уровень сигнала подать только на один из информационных входов D0—D7?

Варианты ответа:

6.3.1. Невозможно.

6.3.2. Возможно, но только в единственном варианте.

6.3.3. Возможно в двух вариантах.

6.3.4. Возможно в трех вариантах.

6.7. АРИФМЕТИЧЕСКИЕ И АРИФМЕТИКО-ЛОГИЧЕСКИЕ

УСТРОЙСТВА

К арифметическим относят комбинационные ЦЭУ, служащие для выполнения арифметических операций сложения, вычитания и умноже­ния многоразрядных двоичных чисел.

Сумматором называют комбинационное ЦЭУ, выполняющее ариф­метическую операцию сложения двух многоразрядных двоичных чисел, кодо­вые комбинации которых присутствуют на его информационных входах. Результат сложения отображается параллельным двоичным ко- дом на выходах сумматора. Поскольку сложение двух многоразрядных чисел всегда начинается с суммирования их младших разрядов, рассмот- рим простейшее ЦЭУ, выполняющее сложение двух одноразрядных чи­сел и называемое полусумматором. Ранее уже отмечалось, что результат такой операции за исключением возможного переноса в сосед­ний более старший разряд описывается булевой функцией сложения по модулю 2. Поэтому полусумматор имеет два информационных входа (XjXq), куда поступает содержимое суммируемых разрядов, а также два выхода. Первый из них 5(XjX0) представляет младший разряд результата и описывается суммой по модулю 2, а второй — Р(ххх0) обеспечивает сигнал переноса. Таблица истинности полусумматора приведена на рис. 6.23, а. Для построения полусумматора используем элемент М2, на выхо­де которого получаем S(x}x0) =М2(х1х0), а также элемент И, на выходе которого будет сигнал переноса /> (jc1jc0)=jc1jc0 (рис.6.23, б). Изображение полусумматора ка структурных схемах дано на рис. 6.23, в.

Для получения результата сложения двух многоразрядных чисел в следующем (за младшим) разряде приходится суммировать уже три одно­разрядных двоичных числа, так как помимо складываемых разрядов не­обходимо учитывать возможный перенос из младшего разряда. Простей­шее ЦЭУ, позволяющее сложить три одноразрядных двоичных числа, называют полным сумматором. Изображение полного сумматора на структурных схемах приведено на рис. 6.24, а Подобно по­лусумматору он имеет два выхода S и Р, но в отличие от него — три входа, один из которых, например, х2 служит для учета сигнала переноса из младшего разряда.

На рис. 6.24.б представлена таблица истинности полного сумматора, из рассмотрения столбца для которой получаем выражение

 

 

Сопоставляя это выражение с функцией М2, приходим к выводу, что получится на выходе S полусумматора, если на один из его входов подать , а на второй – х2

Рис.6.23. Полусумматор; а — таблица истинности, б — схема; в —условное обозначение полусумматора

 

 

 

№ наборе
I I
I

 

б)

Рис.6.24. Полный сумматор: а — условное обозначение полного сумматора; б — таблица истинности; в — реализация на двух полусумматорах

Далее по таблице (см.рис.6.24, б) для выхода запишем вы­ражение

,

упрощая которое, а также учитывая, что оконча­тельно получаем

.

Заметим, что второе слагаемое в этом выражении представляет собой сигнал с выхода переноса полусумматора. В целом получится на выходе элемента ИЛИ, на один из входов которого подается сигнал переносасвыходаполусумматора HS2, а на другой—сигнал . Сигналы и можно получить с выходов еще одного полусумматора HS1, на входы которого поступает содержимое разря­дов и . Реализация полного сумматора на двух полусумматорах и одном элементе ИЛИ показана на рис. 6.24.в

SM

а)

Рис.6.25. Полный 4-разрядный сумматор с
последовательным переносом: а — структур­
ная схема; б — условное обозначение 4-раз рядного сумматора
 

На основе полусумматора и нескольких полных сумматоров однораз­рядных двоичных чисел строят схемы полных сумматоров двух многоразрядных чисел. Соединяя выходы переноса полусумматора и последующих полных сумматоров друг за другом, полу­чаем схему многоразрядного полного сумматора с последовательным переносом. В этом сумматоре младшие разряды двух суммируемых двоичных чисел подаются на входы полусумматора, а остальные разряды — на входы соответственных пол­ных сумматоров одноразрядных чисел. Результат сложения в параллель­ном двоичном коде снимается поразрядно со всех выходов S, а сигнал переноса в следующий более старший разряд — с выхода Р последнего полного сумматора. В качестве примера на рис. 6.25 представлены струк­турная схема и изображение полного сумматора с последовательным пе­реносом для выполнения сложения двух четырехразрядных чисел и . Быстродействие такого сумматора ограничи­вается временем прохождения сигнала переноса по всем его разрядам, поэтому при большом числе разрядов оно может оказаться значитель­ным. Для сокращения этого времени применяют специальные схемы сум­маторов с ускоренным переносом. Однако обладая повышенным быстро­действием, такие сумматоры требуют большего количества элементов для их реализации.

 

Вычитание двоичных чисел обычно заменяют операцией сложения уменьшаемого с вычитаемым, записанном в одном из специальных кодов.[4]

Микросхемы полусумматоров после номера серии в своем условном обозначении имеют буквы ИЛ, а полных сумматоров—буквы ИМ. При этом выпускаются интегральные схемы как полных сумматоров одно­разрядных чисел (например К555ИМ5, содержащая в одном корпусе два полных ТТЛШ —сумматора одноразрядных двоичных чисел), так и многоразрядные полные сумматоры (например, КМ555ИМ6 — четы­рехразрядный сумматор с ускоренным переносом),.

Умножителем называют арифметическое устройство для вычисле­ния произведения многоразрядных двоичных чисел. Операция умножения двух многоразрядных двоичных чисел чаще всего выполняется путем многократного сложения с весом поразрядно сдвинутых влево копий одного из сомножителей. В качестве указанных весовых коэффициен­тов, с которыми складываются соответствующие сдвинутые копии, используются биты (0 или 1) другого сомножителя. Таким образом, умножители могут быть построены на нескольких многоразрядных полных сумматорах, поэтому они также относятся к классу комбинаци­онных ЦЭУ. Заметим, что при параллельном коде результата количес­тво выходов умножителя должно быть не меньше суммы разрядов сомножителей. Изображая умножители на структурных схемах, их по­мечают буквами МР. Микро-схемы умножителей после номера серии обозначают буквами ИП (прочие цифровые устройства).

Большую группу комбинационных ЦЭУ составляют арифметико-ло­гические устройства (АЛУ), выполняющие ряд обычных и специальных арифметических и логических операций: прибавление и вычитание едини­цы, сравнение двоичных чисел и формирование по его результатам неко­торых логических функций, выявление знака разности двоичных чисел, контроль соответствия суммы единиц двоичного кода четному (или нечет­ному) числу, преобразование кодов и т.д. Благодаря использованию пос­ледних достижений в микроэлектронике, АЛУ представляют собой весьма сложные комбинационные ЦЭУ, обладающие разнообразными и бога­тейшими функциональными возможностями. Они составляют основу аппаратных средств, с помощью которых выполняется большинство «ма­шинных» команд в современной микропроцессорной вычислительной технике. На структурных схемах АЛУ обозначаются буквами ALU, а их микросхемы (подобно умножителям) обозначают буквами ИП. Напри­мер, К555ИПЗ представляет собой микросхему АЛУ, выполняющую 16 арифметических и 16 логических операций, выбор которых осуществляет­ся различными комбинациями логических уровней на четырех управляю­щих входах ЕДО — ЕДЗ, а также на входе выбора режима работы М. При низком уровне сигнала на входе М микросхема выполняет арифметичес­кие, а при высоком — логические операции.

6.8. ПОСЛЕДОВАТЕЛЬНОСТНЫЕ ЦИФРОВЫЕ УСТРОЙСТВА

Принципиальное отличие последовательностных ЦЭУ от комбинаци­онных заключается в том, что при пассивных уровнях сигналов на входах комбинационные ЦЭУ всегда возвращаются в исходное состояние, в то время, как последовательностные находятся в режиме хранения предыдущего состояния. По этой причине в состав типовых последова­тельностных ЦЭУ, к которым относятся счетчики, регистры и запомина­ющие устройства, помимо обычных логических элементов, обязательно входят элементы памяти, выполненные, например, на триггерах.

С нетчиками называют последовательностные ЦЭУ, обеспечивающие хранение двоичного кода числа и выполнение над ним микрооперации счета, которая заключается в изменении значения числа в счетчике на ± 1. Если при подаче активного уровня сигнала на информационный вход счетчика его содержимое увеличивается на единицу, счетчик назы­вают суммирующим, а если уменьшается на единицу — вычита­ющим. Счетчик называют реверсивным, если он выполняет обе предыдущие операции. Счетчик называют синхронным, если состояния всех его выходов устанавливаются в определенные моменты времени, определяемые импульсами синхронизации. У асинхронных счетчиков состояния могут устанавливаться с некоторой задержкой относительно друг друга.

Основной параметр счетчика — модуль счета Кс, определяющий Максимальное число сигналов, которое может быть сосчитано счетчи­ком. Как правило, в схемах счетчиков используют триггеры, поэтому счет количества поступивших сигналов в них ведется в двоичной систе­ме счисления. Двоичный счетчик с n-разрядами способен подсчитать 2п сигналов, отображая их количество двоичными числами в диапазоне от 0 до (2n-1). После сигнала с номером 2п такой счетчик возвращается в исходное состояние.


Рис 6 26 Трехразрядный суммирующий двоичный счетчик а — таблица со­стоянии. б — временные диаграммы, поясняющие его работу, в — схема сумми- рующего счетчика, г — условное обозначение реверсивного счетчика на струк­турных схемах, д — работа реверсивного счетчика от одного источника счетных импульсов

 

Рассмотрим таблицу состояний (рис.6.26, а) трехразрядного суммиру­ющего двоичного счетчика ( ), выполняющего микрооперацию сум­мирования (по обычным правилам) его предьщущего состояния с едини­цей Полагаем, что в исходном состоянии на всех выходах счетчика при­сутствуют нули. Как следует из этой таблицы, сигнал на выходе младшего разряда счетчика изменяет свое состояние на инверсное всякий раз после поступления очередного подсчитываемого импульса на его вход Это означает, что такой сигнал может бьггь получен на выходе счетного триггера D0, на вход которого подаются счетные импульсы После прохождения первого счетного импульса на выходе Q0 этого триг­гера будет активное (единичное) состояние. Если к выходу D0 подклю­чить второй такой же счетный триггер D1, который также изменял бы свое состояние после прохождения активного уровня сигнала на его вхо­де, с выхода триггера D1 будет получен сигнал . Рассуждая анало­гично, приходим к выводу, что по окончании активного уровня сигнала на выходе DI на выходе следующего за ним точно такого же счетного триггера D2 будет состояние

На рис.6 26, б приведены временные диаграммы, поясняющие работу асинхронного трехразрядного двоичного суммирующего счетчика, а на рис 6 26, в—его схема на асинхронных двухступенчатых JK-триггерах, включенных по схеме асинхронного T-триггера Для правильной работы этой схемы весьма существенно то, что переключение двухступенчатого JK -триггера происходит по окончании активного единичного уровня сиг­нала на его входе синхронизации С. Заметим, что частота следования импульсов на выходе триггера D0 — в 2 раза, на выходе D1 — в 4 раза, а на выходе D2 — в 8 раз ниже частоты следования импульсов на входе счетчика По этой причине суммирующие счетчики часто также применя­ются в качестве делителей частоты.Вход R, объединяющий входы асинхронного сброса всех триггеров, служит для предварительной установки разрядов счетчика в исходное нулевое состояние.

Для увеличения количества разрядов счетчиков применяют их каскад­ное соединение друг за другом, для чего в схеме счетчика предусматрива­ют специальный выход Р, с которого снимают сигнал переноса на инфор­мационный вход С1 следующего счетчика В схеме счетчика (см рис.6 26, в) для этой цели введен дополнительный логический элемент 4И, на один из входов которого поступают счетные импульсы, а три ос­тальных подключены к выходам триггеров D0, D1 и D2 Поскольку после седьмого импульса все триггеры счетчика установлены, в момент прихо­да восьмого импульса на выходе Р(> 7) этого элемента появится единич­ный уровень, который и используют в качестве сигнала переноса на вход С1 следующего счетчика

 

В худшем случае (после седьмого импульса) для установки оконча[5] тельного состояния всех разрядов счетчика (смрис.6.26.в) потребуется последовательное переключение всех его триггеров. Поскольку переклю­чение каждого триггера всегда происходит с некоторой задержкой, этот процесс соответствует распространению сигнала переноса по линейке триггеров (подобно распространению сигнала переноса в схемах сумма­торов). По этой причине счетчики, построенные по такому принципу, час­то называют счетчиком с последовательным (сквозным) переносом. При большом числе разрядов счетчика указанная задержка может оказаться значительной, что и ограничивает его быстро­действие. *

В вычитающих счетчиках с приходом очередного импульса содержимое счетчика уменьшается на единицу. Обычно в ис­ходном состоянии все триггеры устанавливают в единицу, что обеспечи­вается объединением их входов S асинхронной установки. Поскольку при этом на всех инверсных выходах триггеров будет состояние логического , требуемые сигналы для переключения линейки триггеров вычитающе­го счетчика получаются, если счетный вход каждого следующего тригге­ра подключить к инверсному выходу предыдущего. Нетрудно убедиться в том, что состояния прямых выходов всех счетных триггеров соответ­ствуют последовательности двоичных состояний вычитающего счетчика.

Реверсивные счетчики объединяют в себе описанные выше схемные решения для суммирующего и вычитающего счетчиков. Счетные импульсы для суммирования в них подаются на вход (+1), а для вычита­ния — на вход (-1). Эти же сигналы управляют и вспомогательными логическими элементами, обеспечивающими необходимую коммутацию цепей для работы счетчика в соответствующих режимах. Изображение трехразрядного реверсивного счетчика на структурных схемах приведено на рис 6.26, г. В этом счетчике на выходах PU (> 7) и PD (< 0) формируют­ся сигналы переноса на соответствующие входы (±1) следующего такого же счетчика. Входы R и S служат для начальной установки всех триггеров счетчика соответственно в 0 или 1.

В цифровых измерительных приборах часто возникает необходимость работы реверсивного счетчика от одного источника счетных импульсов, причем одна часть импульсов должна суммироваться, а другая — вычи­таться В этом случае реверсивный счетчик подключают через дополни­тельное ЦЭУ (смрис.6.26, д) в виде RS-триггера и двух элементов 2Л переключающее режимы работы счетчика. При высоком уровне сигнала на входе разрешения суммирования (+E) RS -триггер устанавливается, и сигналы счета С0 поступают на вход (+1). С другой стороны, при высоком уровне сигнала на входе разрешения вычитания (-Е) RS -триггер сбрасыва­ется, и реверсивный счетчик работает в режиме вычитания счетных им­пульсов С0.

Помимо двоичных счетчиков, модуль счета которых равен степени двойки, на практике часто возникает потребность в счетчиках с произ­вольным модулем счета Кс. Для построения таких счетчиков обычно используют двоичный счетчик, модуль счета которого превышает требуемое значение Кс, и при помощи дополнительных устройств или цепей обратной связи исключают в нем лишние состояния, уменьшая их число до значения Кс.

На рис.6.27, а приведена схема асинхронного суммирующего счетчи­ка с модулем счета Кс= 5, которая отличается от схемы трехразрядного двоичного счетчика тем, что в нее введена цепь обратной связи через логический элемент DD1, обеспечивающая перевод триггера D0 в нуле­вое состояние после четвертого импульса, а также добавлен элемент DD2, сбрасывающий триггер D2 после пятого импульса. Сигнал с выхода этого элемента можно использовать в качестве сигнала перено­са Р при каскадном соединении таких счетчиков. Логический элемент DD3 играет вспомогательную роль, обеспечивая по шине R асинхрон­ную установку счетчика в нулевое исходное состояние.

Двоично-десятичным (или просто десятичным) называют счетчик с модулем счета Кс=10. Состояния такого счетчика трактуются в виде двоично-десятичного кода первых десяти цифр (от 0 до 9). Многораз­рядные десятичные числа в этом коде могут быть получены на выходах нескольких таких счетчиков, включенных каскадно.

Схему двоично-десятичного счетчика можно построить, включив, например, перед счетчиком с модулем Кс=5 счетчик делитель частоты на 2 (Кс =2).В качестве такого делителя частоты на 2 можно использовать, например, триггер D0 из схемы (см.рис.6.26, в). Поскольку при каскад­ном соединении счетчиков их модули счета умножаются, получим счет­чик с Кс = 10. Условное изображение асинхронного десятичного счетчи­ка на структурных схемах приведено на рис.6.27, б Десятичные счетчи­ки получили широкое распространение в измерительной технике и, в частности, в приборах с цифровой индикацией. Например, соединяя выходы двоично-десятичного счетчика с входами дешифратора К514ИД1, к выходам которого по схеме рис.6.20, а подключен светоди­одный семисегментный индикатор, на табло этого индикатора можно Получать изображения десятичных цифр, соответствующих количеству Импульсов, подсчитанных счетчиком.

 

Рис.6.27 Асинхронные счетчики: a — струк­турная схема счетчика с модулем счета Кс =5; 6 — условное обозначение двоично-десятичного счетчика

Микросхемы счетчиков после номера серии обозначают буквами ИЕ. В настоящее время выпускается довольно обширная их номенкла­тура от простейших, позволяющих вести счет только в одном направле­нии, до многоразрядных двоичных и десятичных, асинхронных и син­хронных счетчиков. Помимо рассмотренных ранее режимов работы, современные микросхемы счетчиков обеспечивают предварительную запись в параллельном двоичном коде исходного состояниям которого зат ем начинается счет в ту или иную сторону (например ТТЛШ-счетчик К555ИЕ18), а также позволяют программным способом, задавая определенные логические уровни на управляющих входах, в широких пределах изменять модуль счета (коэффициент деления частоты следования входных импульсов, как например, в TTЛ-микросхеме К155ИЕ8). Су­ществуют также микросхемы, объединяющие в себе десятичный счетчик с дешифратором для управления семисегментным цифровым индикато­ром, например, ИС К176ИЕЗ и К176ИЕ4.

Регистрами называют последовательностные ЦЭУ, служащие для записи и хранения многоразрядных чисел, выполнения над ними пораз­рядных логических операций и вывода хранимой информации. Проще всего при помощи регистров выполняются такие поразрядные логические операции, как инверсия бит, сдвиги кода числа влево и вправо на задан­ное количество разрядов и некоторые другие. Поскольку триггер обеспе­чивает хранение одного бита информации, схемы регистров строят на основе цепочки триггеров, количество которых определяется числом раз­рядов двоичного числа. Ввод и вывод информации в регистрах может выполняться как в параллельном, так и в последовательном двоичном коде.

Регистры с параллельным приемом и выдачей информации называют регистрами памяти, а с последовательным вводом и выводом —сдвига­ющими (сдвиговыми) регистрами. Регистр называют реверси в- н ы м, если поразрядный сдвиг двоичного кода в нем может выполняться в обе стороны. Однотипные регистры также могут различаться и некото­рыми дополнительными возможностями, например, наличием как пря­мых, так и инверсных выходов, выводов наращивания разрядности, ре­жима асинхронного или синхронного сброса хранимой информации и т.п. В регистрах памяти для хранения двоичной информации используют D-триггеры.

На рис.6.28, а приведена схема трехразрядного регистра памяти, на примере этой схемы рассмотрим принцип реализации некоторых наибо­лее важных функций регистров памяти. Регистр выполнен на трех син­хронных D-триггерах, асинхронные входы сброса которых подключены к шине очистки R. Активным единичным уровнем сигнала на этой шине производят очистку регистра (режим очистки). Далее по сигналу разреше­ния записи L информация на входных шинах данных в параллельном двоичном коде через переключающие ячейки (на элементах 2 х 2И — ИЛИ) поступает на D-входы триггеров D0, D1 и D2. По оконча­нии импульса синхронизации на входе С (т.е. к следующему такту) она появляется на выходах соответствующих триггеров (режим записи). Пос­ле этого соответственная комбинация входных данных может быть снята, так как регистр выполняет их временное хранение. Отметим, что для записи входной информации в регистр не требуется его предварительной очистки, так как предыдущая информация, хранимая в нем, исчезает и заменяется новым содержанием.

Для выполнения, например, такой поразрядной логической операции, как инверсия бит, необходимо подать активный единичный уровень сиг­нала на шину В инверсий бит. При этом коммутирующие ячейки на эле­ментах 2 х 2И—ИЛИ подключают к D-входу каждого триггера его инвер­сный выход, обеспечивая его режим работы в качестве счетного триггера Тогда при единичном уровне сигнала на входе синхронизации С состояние каждого из них (в режиме счетного триггера) меняется на инверсное Наконец, для чтения (вывода) информации из регистра памяти активны^ уровень сигнала подают на вход Е разрешения чтения, и содержимое регистра через блокирующие ячейки (на элементах 2И) также в парал­лельном коде выставляется на выходных шинах Отметим, что режим чтения не разрушает информации в регистре, она хранится в нем до оче­редного цикла записи новых данных.


 



Рис.6.28. Регистры: а — схема трехраз­рядного регистра памяти; б —схема трех­разрядного сдвигающего регистра; в—схема двунаправленных шинных уси­лителей; г — универсальный регистр К564ИР6

 


 


Поделиться:



Последнее изменение этой страницы: 2017-05-05; Просмотров: 705; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.073 с.)
Главная | Случайная страница | Обратная связь