![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Количество теплоты, полученное системой, в общем случае идёт на изменение внутренней энергии системы и на совершение системой работы.
Для конечного процесса первое начало термодинамики можно записать так:
Первое начало термодинамики для изобарического процесса имеет вид: для элементарного процесса Учитывая, что
При поступлении некоторого количества теплоты в систему, её температура возрастает, Если система отдаёт некоторое количество теплоты, её температура понижается, Применим первое начало термодинамики к изохорическому процессу. При изохорическом процессе объём остаётся постоянным и
Применим первое начало термодинамики к изотермическому процессу, при котором температура неизменна, а, следовательно, внутренняя энергия системы не изменяется, всё полученное системой количество теплоты идёт на совершение системой макроскопической механической работы. В этом случае первое начало термодинамики имеет вид для элементарного процесса Теплоемкость. Уравнение Майера Удельная теплоемкость вещества величина, равная количеству теплоты, необходимому для нагревания 1 кг вещества на 1 К: Единица удельной теплоемкости — джоуль на килограмм-кельвин (Дж/(кг•К)). Молярная теплоемкость— величина, равная количеству теплоты, необходимому для нагревания 1 моля вещества на 1 К:
где v = m/M — количество вещества, выражающее число молей. Единица молярной теплоемкости — джоуль на моль-кельвин (Дж/(моль•К)). Удельная теплоемкость с связана с молярной Сm соотношением Ст = сМ, (9-18) где М — молярная масса вещества. Различают теплоемкости при постоянном объеме и постоянном давлении, если в процессе нагревания вещества его объем или давление поддерживается постоянным. Запишем выражение первого начала термодинамики для 1 моля газа с: CmdT=dUm + pdVm. (9-19) Если газ нагревается при постоянном объеме, то работа внешних сил равна нулю и сообщаемая газу извне теплота идет только на увеличение его внутренней энергии:
т. е. молярная теплоемкость газа при постоянном объеме Сv равна изменению внутренней энергии 1 моля газа при повышении его температуры на 1 К. Так как
то Cv = iR/2. (9-21) Если газ нагревается при постоянном давлении, то выражение (9-21) можно записать в виде
Учитывая, что dUm/dT не зависит от вида процесса (внутренняя энергия идеального газа не зависит ни от р, ни от V, а определяется лишь температурой Т) и всегда равна Сv, продифференцировав уравнение Клапейрона — Менделеева pVm=RT по T(p=const), получим Cp = Cv + R. (9-22) Выражение (9-22) называется уравнением Майера; оно показывает, что Ср всегда больше Сv на величину молярной газовой постоянной. Это объясняется тем, что при нагревании газа при постоянном давлении требуется еще дополнительное количество теплоты на совершение работы расширения газа, так как постоянство давления обеспечивается увеличением объема газа. Использовав (9-21) выражение (9-22) можно записать в виде При рассмотрении термодинамических процессов важно знать характерное для каждого газа отношение Ср к Cv: g=Cp/Cv=(i+2)/i. Адиабатный процесс Существует достаточно много явлений, например, нагревание ручного насоса при накачивании шин, понижение температуры воздуха после извержения вулкана, при котором быстро расширяются газы, изменение температуры воздуха при сильных порывах ветра, процессы, происходящие с веществом, заключённым в теплоизолирующую оболочку, распространение звуковых волн и многие другие, объяснить которые можно, используя понятие адиабатного процесса. Адиабатный процесс это процесс, происходящей без теплообмена системы с окружающей средой. Реализовать такой процесс на практике можно, быстро сжимая или расширяя газ, или заключая его в теплоизолирующую оболочку (термос, сосуд Дьюара). При адиабатном процессе Получим уравнение адиабаты, используя первое начало термодинамики. Приращение внутренней энергии можно записать через молярную изохорическую теплоёмкость:
Исключим из этого уравнения приращение температуры, используя уравнение Менделеева - Клапейрона
Так как знаменатель не равен нулю, то равенство будет выполняться, если числитель равен нулю. После приведения подобных получим:
Обозначим отношение теплоёмкостей
Поделим обе части равенства на PV и получим уравнение с разделяющимися переменными:
Это уравнение показывает, что при адиабатном процессе с изменением объёма давление изменяется на большую величину, чем при изотермическом процессе, поскольку Используя уравнение состояния идеального газа, можно записать уравнение адиабаты через объём и температуру. Для этого нужно из уравнения состояния идеального газа выразить давление и подставить в уравнение (9-24). После преобразований получим:
Можно записать уравнение адиабаты через давление и температуру, выразив из уравнения состояния идеального газа, объём через давление и температуру:
Процесс адиабатного расширения изображён на рис.9.5 При адиабатном расширении газ совершает работу за счёт убыли собственной внутренней энергии:
Работу газа при адиабатном процессе можно определить и через элементарную работу:
Используя уравнение Менделеева – Клапейрона, можно получить другую формулу:
Следует отметить, что само по себе расширение идеального газа не может привести к его охлаждению, если при расширении газ не производит работу. Это значит, что, если идеальный газ расширяется таким образом, что к сосуду, в котором он находится, присоединяется другой пустой сосуд, то температура газа не изменится. Неизменность температуры обусловлена тем, что внутренняя энергия идеального газа не зависит от объёма. При таком расширении в пустоту идеальный газ не совершает работы. Политропический процесс Политропическим процессом называется всякий процесс изменения состояния, при котором теплоёмкость газа С остаётся постоянной и равной Отсюда выразим количество теплоты через теплоёмкость газа при политропическом процессе:
Продифференцируем уравнение состояния идеального газа и выразим дифференциал температуры:
Обозначим
Это уравнение может быть выражено и через другие пары параметров состояния, аналогично тому, как это было сделано для адиабатного процесса. Рассмотренные изопроцессы и адиабатный процесс изменения состояния газа можно рассматривать как частные случаи более общего политропического процесса. Покажем, что из уравнения (9-32) можно получить уравнения известных нам процессов. Для адиабатного процесса Для изотермического процесса dT=0 , Для изобарного процесса С=СР , n=0 , а уравнение (9-32) будет иметь вид Для изохорического процесса С=СV, |
Последнее изменение этой страницы: 2017-05-05; Просмотров: 554; Нарушение авторского права страницы