Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Понятие устойчивости по Ляпунову.
Пусть САУ описывается с помощью системы уравнений при заданных начальных условиях: Решением данного уравнения является как функция начальных значений (уравнение невозмущенного движения). Здесь xi0 – установившееся движение. К системе приложено внешнее воздействие, которое привело к отклонению движения от установившегося . Для данных отклонений можно записать систему уравнений: Уравнение - является уравнением возмущенного движения. Невозмущенное движение ( ) называется устойчивым по отношению к переменным xi, если для любого положительного числа А2, как бы мало оно ни было, найдется другое положительное число l2, которое удовлетворяет условию для всех возмущений: , а возмущенное движение удовлетворяет условию , где mi – весовые коэффициенты. Движение будет устойчивым, если при небольших изменениях начальных условий, вызванных внешними воздействиями, невозмущенное движение будет отличаться от возмущенного движения мало. Данное определение справедливо как для линейных, так и для нелинейных систем.
Свободное движение линейной или линеаризованной системы описывается однородным дифференциальным уравнением где - свободная составляющая выходной величины системы. Система является устойчивой, если свободная составляющая xc(t) переходного процесса с течением времени стремится к нулю, т.е. если . Такая устойчивость называется асимптотической. Если свободная составляющая неограниченно возрастает, т.е. если , то система неустойчива. Наконец, если свободная составляющая не стремится ни к нулю, ни к бесконечности, то система находится на границе устойчивости. Найдем общее условие, при котором система, описываемая уравнением (*), устойчива. Решение уравнения (*) равно сумме где Ck – постоянные, зависящие от начальных условий; pk – корни характеристического уравнения . Корни данного уравнения могут быть действительными (pk=ak), мнимыми (pk=jbk) и комплексными (pk=ak± jbk). Переходная составляющая (**) при t®¥ стремится к нулю лишь в том случае, если каждое слагаемое вида . Характер этой функции времени зависит от вида корня pk. Рассмотрим все возможные случаи расположения корней pk на комплексной плоскости (см. рис.) и соответствующие им функции xk(t), которые показаны внутри кругов (как на экране осциллографа).
1. Каждому действительному корню pk=ak в решении (**) соответствует слагаемое вида Если ak< 0 (корень р1), то функция (***) при t®¥ стремится к нулю. Если ak> 0 (корень р3), то функция (***) неограниченно возрастает. Если ak=0 (корень р2), то функция (***) остается постоянной. 2. Каждой паре сопряженных комплексных корней pk=ak± jbk в решении (**) соответствуют два слагаемых, объединенных в одно Эта функция представляет собой синусоиду с частотой bk и амплитудой, изменяющейся во времени по экспоненте. Если действительная часть двух комплексных корней ak< 0 (корни р4 и р5), то колебательная составляющая (****) будет затухать. Если ak> 0 (корни р8 и р9), то амплитуда колебаний будет неограниченно возрастать. Наконец, если ak=0 (корни р6 и р7), т.е. если оба сопряженных корня – мнимые (pk=+ jbk, pk+1=- jbk), то xk(t) представляет собой незатухающую синусоиду с частотой bk. Общее условие устойчивости: Для устойчивости линейной автоматической системы управления необходимо и достаточно, чтобы действительные части всех корней характеристического уравнения системы были отрицательны. При этом действительные корни рассматриваются как частный случай комплексных корней, у которых мнимая часть равна нулю. Если хотя бы один корень имеет положительную действительную часть, то система будет неустойчивой. Устойчивость системы зависит только от вида корней характеристического уравнения и не зависит от характера внешних воздействий на систему. Устойчивость есть внутренне свойство системы, присущее ей вне зависимости от внешних условий. Используя геометрическое представление корней на комплексной плоскости (см. рис.) в виде векторов или точек, можно дать вторую формулировку общего условия устойчивости (эквивалентную основной): Для устойчивости линейной системы необходимо и достаточно, чтобы все корни характеристического уравнения находились в левой полуплоскости. Если хотя бы один корень находится в правой полуплоскости, то система будет неустойчивой. Мнимая ось jb является границей устойчивости в плоскости корней. Если характеристическое уравнение имеет одну пару чисто мнимых корней (pk=+jbk, pk+1=-jbk), а все остальные корни находятся в левой полуплоскости, то в системе устанавливаются незатухающие гармонические колебания с круговой частотой . В этом случае говорят, что система находится на колебательной границе устойчивости. Точка b =0 на мнимой оси соответствует так называемому нулевому корню. Если уравнение имеет один нулевой корень, то система находится на апериодической границе устойчивости. Если таких корня два, то система неустойчива.
|
Последнее изменение этой страницы: 2017-05-06; Просмотров: 544; Нарушение авторского права страницы