Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ФИЛОСОФИИ НАУКИ



ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ФИЛОСОФИИ НАУКИ

Становление философии науки в качестве относительно самостоятельной области исследований было обусловлено двумя взаимосвязанными группами факторов: во-первых, изменениями в самой философии, появлением в ней новых стратегий исследования; во-вторых, потребностями науки в разработке нового типа её философско-методологического обоснования.

Классическая философия была ориентирована на построение завершённых и всеобъемлющих систем, которые претендовали на статус абсолютной истины. В философии Нового времени такие системы в большинстве своём стремились опираться на достижения науки.

Вместе с тем свойственное философам классического этапа стремление создавать законченные философские системы, претендующие на последнюю и окончательно истинную картину мироздания (природы, общества и мышления), нередко навязывали науке неадекватные представления о мире. Включение научных достижений в прокрустово ложе заранее построенной философской системы часто приводило к ложным научным результатам или искаженной интерпретации достижений. Натурфилософские построения, как отмечал Ф. Энгельс, подчас содержали гениальные догадки, но вместе с тем в них было и немало всяческого вздора.

С середины XIX века в философии начинают формироваться новые подходы. Возникает критическое отношение к классическому идеалу последней и абсолютно истинной философской системы. Философия осознает себя как развивающаяся система знания, которая, подобно науке, не заканчивается ни на одном этапе своего развития достижением окончательной и всеобъемлющей картины мироздания. Одновременно философия в этот период всё больше начинает обращать внимание на специфику познания и знания не только в науке, но и в других областях культуры — искусстве, морали, политическом и правовом сознании, обыденном мышлении, религиозном опыте, и так далее.

Проверяя свои построения путём их постоянного соотнесения с реальным развитием различных сфер культуры, отдельные области философского знания начинают обретать относительную самостоятельность. Они конституируются в качестве специальных философских дисциплин (онтология, теория познания, этика, эстетика, философия религии, философия права, философия науки, и так далее). Этот процесс специализации философских исследований занял длительный период. Он наметился примерно в середине XIX века и получил относительно завершённую форму уже в XX столетии.

Другой процесс, обусловивший выделение философии науки в особую сферу исследований, был связан с потребностями самой науки. К середине XIX века каждая научная дисциплина стала развивать свои представления об исследуемой реальности и свои методы. Разрушилось прежнее единство науки, которое в XVII–XVIII веков обеспечивало господство механической картины мира, идеалов и методов механистического объяснения. Возникла острая проблема состыковки различных представлений о реальности, вырабатываемых в различных науках, воссоздания на новой основе целостной научной картины мира. В свою очередь, решение этой проблемы предполагало выработку новых методологических подходов, в противовес принципам механистического редукционизма, и новых философских оснований науки, которые должны были заменить широко распространённую в науке XVII–XVIII веков философию механицизма. В контексте всех этих проблем формировалась философия науки как область философского знания, нацеленная на разработку методологических и мировоззренческих проблем науки.

Исторически так сложилось, что в западной философии науки вначале доминирующее положение заняли идеи позитивизма. Как направление в философии позитивизм прошёл три этапа развития: первый позитивизм XIX века (О. Конт, Г. Спенсер, Дж. С. Милль); второй позитивизм — эмпириокритицизм (Э. Мах, Р. Авенариус и другие); третий позитивизм — неопозитивизм или логический позитивизм (работы Б. Рассела и Л. Витгенштейна 20–30-х годов XX века, «Венский кружок» — М. Шлик, Р. Карнап, Ф. Франк, В. Крафт, Р. Мизес, О. Нейрат, Г. Ган, К. Гёдель и другие, «Берлинское общество эмпирической философии» — Г. Рейхенбах, В. Дубис-лав, К. Гемпель, принимавший также участие в работе «Венского кружка», и другие).

Через все три этапа развития позитивизма проходит общая идея, которая в неопозитивизме была сформулирована как программа «реконструкции философии». Справедливо критикуя натурфилософские построения, которые часто навязывали науке неадекватные умозрительные образы изучаемых ей объектов и процессов, позитивизм перенес эту критику на философию в целом. Так возникла идея очищения науки di метафизики (где под метафизикой понимались фундаментальные идеи и принципы философии). Но ускоряющееся развитие науки остро ставило проблемы своего философско-методологического обоснования. Наука всё чаще сталкивалась с необходимостью корректировать применительно к новым объектам исследования ранее сложившиеся в ней методологические принципы объяснения, описания, обоснования и доказательности знания. Изменение научной картины мира под влиянием новых фундаментальных открытий меняло прежние мировоззренческие образы.

Все эти проблемы учитывались позитивизмом. Он сохранил идею философии как методологии науки, но полагал, что развивать эту область знания следует без обращения к «философской метафизике», средствами самой науки. Эта программа была сформулирована в первом позитивизме и затем с небольшими модификациями выдвигалась на всех его последующих этапах.

ПОЗИТИВИЗМ О. КОНТА, Г. СПЕНСЕРА, ДЖ. С. МИЛЛЯ (ПЕРВЫЙ ПОЗИТИВИЗМ)

НЕОПОЗИТИВИЗМ (ТРЕТИЙ ПОЗИТИВИЗМ)

РАЗВИТИЕ ФИЛОСОФИИ НАУКИ ВО ВТОРОЙ ПОЛОВИНЕ XX ВЕКА

В многообразии постпозитивистских концепций западной философии науки наиболее интересными и влиятельными являются критический рационализм К. Поппера, концепция научно-исследовательских программ И. Лакатоса, концепция исторической динамики науки Т. Куна, «анархистская эпистемология» П. Фейерабенда.

ГЛАВА 2. НАУЧНОЕ ПОЗНАНИЕ В СОЦИОКУЛЬТУРНОМ ИЗМЕРЕНИИ

МЕСТО И РОЛЬ НАУКИ В КУЛЬТУРЕ ТЕХНОГЕННОЙ ЦИВИЛИЗАЦИИ

Наука является культурно-историческим феноменом. Она возникла в контексте исторического развития цивилизации и культуры, на определённых стадиях этого развития. Проблемы будущего современной цивилизации не могут обсуждаться вне анализа современных тенденций развития науки и её перспектив. Хотя в современном обществе существуют и антисциентистские движения, в целом наука воспринимается как одна из высших ценностей цивилизации и культуры. Однако так было не всегда, и не во всех культурах наука занимала столь высокое место в шкале ценностных приоритетов. В этой связи возникает вопрос об особенностях того типа цивилизационного развития, который стимулировал широкое применение в человеческой деятельности научных знаний.

СПЕЦИФИКА НАУЧНОГО ПОЗНАНИЯ

ГЕНЕЗИС НАУЧНОГО ПОЗНАНИЯ

Характеристики развитых форм научного познания во многом намечают пути, на которых следует искать решение проблемы генезиса теоретического знания как феномена культуры.

ПРЕДНАУКА И РАЗВИТАЯ НАУКА

В истории формирования и развития науки можно выделить две стадии, которые соответствуют двум различным методам построения знаний и двум формам прогнозирования результатов деятельности.

Первая стадия характеризует зарождающуюся науку (преднауку), вторая — науку в собственном смысле слова. Зарождающаяся наука изучает преимущественно те вещи и способы их изменения, с которыми человек многократно сталкивался в производстве и обыденном опыте. Он стремился построить модели таких изменений с тем, чтобы предвидеть результаты практического действия. Первой и необходимой предпосылкой для этого было изучение вещей, их свойств и отношений, выделенных самой практикой. Эти вещи, свойства и отношения фиксировались в познании в форме идеальных объектов, которыми мышление начинало оперировать как специфическими предметами, замещающими объекты реального мира 10. Эта деятельность мышления формировалась на основе практики и представляла собой идеализированную схему практических преобразований материальных предметов.

Соединяя идеальные объекты с соответствующими операциями их преобразования, ранняя наука строила таким путём схему тех изменений предметов, которые могли быть осуществлены в производстве данной исторической эпохи. Так, например, анализируя древнеегипетские таблицы сложения и вычитания целых чисел, нетрудно установить, что представленные в них знания образуют в своём содержании типичную схему практических преобразований, осуществляемых над предметными совокупностями.

В таблицах сложения каждый из реальных предметов (это могут быть животные, собираемые в стадо, камни, складываемые для постройки, и так далее) замещался идеальным объектом «единица», который фиксировался знаком I (вертикальная черта). Набор предметов изображался здесь как система единиц (для «десятков», «сотен», «тысяч» и так далее в египетской арифметике существовали свои знаки, фиксирующие соответствующие идеальные объекты). Оперирование предметами, объединяемыми в совокупность (сложение), и отделяемыми от совокупности предметов или их групп (вычитание) изображалось в правилах действия над «единицами», «десятками», «сотнями» и так далее. Прибавление, допустим, к пяти единицам трёх единиц производилось следующим образом: изображался знак III (число «три»), затем под ним писалось ещё пять вертикальных черточек IIIII (число «пять»), а затем все эти черточки переносились в одну строку, расположенную под двумя первыми. В результате получалось восемь черточек, обозначающих соответствующее число. Эти операции воспроизводили процедуры образования совокупностей предметов в реальной практике (реальное практическое образование и расчленение предметных совокупностей было основано на процедуре добавления одних единичных предметов к другим).

Используя такого типа знания, можно было предвидеть результаты преобразования предметов, характерные для различных практических ситуаций, связанных с объединением предметов в некоторую совокупность. акую же связь с практикой можно обнаружить в первых знаниях, относящихся к геометрии. Геометрия (грен», гео» — земля, «метрия» — измерение) в самом первичном смысле термина обнаруживает связь с практикой измерения земельных участков. Древние греки заимствовали первичные геометрические знания у древних египтян и вавилонян.

Земледельческая цивилизация Древнего Египта основывалась на возделывании плодородных земель в долине Нила. Участки земли, которыми владели различные сельские общины, имели свои границы. При разливах Нила эти границы заносились речным илом. Их восстановление было важной задачей, которую решали особые государственные чиновники. Очертания участков и их размеры изображались в чертежах на папирусе. Такие чертежи были моделями земельных участков, и по ним восстанавливались их границы.

Кроме восстановления границ земельных участков существовали практические потребности вычисления их площадей. Это породило новый класс задач, решение которых требовало оперирования с чертежами. В этом процессе были выделены основные геометрические фигуры — треугольник, прямоугольник, трапеция, круг, через комбинации которых можно было изображать площади земельных участков сложной конфигурации.

В древнеегипетской математике были найдены способы вычисления площадей основных геометрических фигур, и эти знания стали применяться не только при измерении земельных участков, но и при решении других практических задач, в частности при строительстве различных сооружений. Операции с геометрическими фигурами на чертежах, связанные с построением и преобразованиями этих фигур, осуществлялись с помощью двух основных инструментов — циркуля и линейки. Этот способ до сих пор является фундаментальным в геометрии. Характерно, что он выступает в качестве схемы реальных практических операций.

Измерение земельных участков, а также сторон и плоскостей создаваемых сооружений в строительстве осуществлялось с помощью туго натянутой мерной веревки с узлами, обозначающими единицу длины (линейка), и мерной веревки, один конец которой закреплялся колышком, а стержень (колышек) на другом её конце прочерчивал дуги (циркуль). Перенесённые на действия с чертежами, эти операции предстали как построения геометрических фигур с помощью циркуля и линейки.

Способ построения знаний путём абстрагирования и схематизации предметных отношений наличной практики обеспечивал предсказание её результатов в границах уже сложившихся способов практического освоения мира. Однако по мере развития познания и практики наряду с отмеченным способом в науке формируется новый способ построения знаний. Он знаменует переход к собственно научному исследованию предметных связей мира.

Если на этапе преднауки как первичные идеальные объекты, так и их отношения (соответственно, смыслы основных терминов языка и правила оперирования с ними) выводились непосредственно из практики и лишь затем внутри созданной системы знания (языка) формировались новые идеальные объекты, то теперь познание делаем следующий шаг. Оно начинает строить фундамент новой системы знания как бы «сверху» по отношению к реальной практике и лишь после этого, путём ряда опосредований, проверяет созданные из идеальных объектов конструкции, сопоставляя их с предметными отношениями практики.

При таком методе исходные идеальные объекты не черпаются уже из практики, а заимствуются из ранее сложившихся систем знания (языка) и применяются в качестве строительного материала при формировании новых знаний. Эти объекты погружаются в особую «сетку отношений», структуру, которая заимствуется из другой области знания, где она предварительно обосновывается в качестве схематизированного образа предметных структур действительности. Соединение исходных идеальных объектов с новой «сеткой отношений» способно породить новую систему знаний, в рамках которой могут найти отображение существенные черты ранее не изученных сторон действительности. Прямое или косвенное обоснование данной системы практикой превращает её в достоверное знание.

В развитой науке такой способ исследования встречается буквально на каждом шагу. Так, например, по мере эволюции математики числа начинают рассматриваться не как прообраз предметных совокупностей, которыми оперируют в практике, а как относительно самостоятельные математические объекты, свойства которых подлежат систематическому изучению. С этого момента начинается собственно математическое исследование, в ходе которого из ранее изученных натуральных чисел строятся новые идеальные объекты. Применяя, например, операцию вычитания к любым парам положительных чисел, можно было получить отрицательные числа (при вычитании из меньшего числа большего). Открыв для себя класс отрицательных чисел, математика делает следующий шаг. Она распространяет на них все те операции, которые были приняты для положительных чисел, и таким путём создаёт новое знание, характеризующее ранее не исследованные структуры действительности. В дальнейшем происходит новое расширение класса чисел: применение операции извлечения корня к отрицательным числам формирует новую абстракцию — «мнимое число». И на этот класс идеальных объектов опять распространяются все те операции, которые применялись к натуральным числам.

Описанный способ построения знаний утверждается не только в математике. Вслед за ней он распространяется на сферу естественных наук. В естествознании он известен как метод выдвижения гипотетических моделей с их последующим обоснованием опытом.

Благодаря новому методу построения знаний наука получает возможность не только изучить те предметные связи, которые могут встретиться в сложившихся стереотипах практики, но и проанализировать изменения объектов, которые в принципе могла бы освоить развивающаяся цивилизация. С этого момента кончается этап преднауки и начинается наука в собственном смысле. В ней наряду с эмпирическими правилами и зависимостями (которые знала и преднаука) формируется особый тип знания — теория, позволяющая получить эмпирические зависимости как следствие из теоретических постулатов. Меняется и категориальный статус знаний — они могут соотноситься уже не только с осуществлённым опытом, но и с качественно иной практикой будущего, а поэтому строятся в категориях возможного и необходимого.

Знания уже не формулируются только как предписания для наличной практики, они выступают как знания об объектах реальности «самой по себе», и на их основе вырабатывается рецептура будущего практического изменения объектов.

Поскольку научное познание начинает ориентироваться на поиск предметных структур, которые не могут быть выявлены в обыденной практике и производственной деятельности, оно уже не может развиваться, опираясь только на эти формы практики. Возникает потребность в особой форме практики, которая обслуживает развивающееся естествознание. Такой формой практики становится научный эксперимент. Поскольку демаркация между преднаукой и наукой связана с новым способом порождения знаний, проблема генезиса науки предстает как проблема предпосылок собственно научного способа исследования. Эти предпосылки складываются в культуре в виде определённых установок мышления, позволяющих возникнуть научному методу. Их формирование является результатом длительного развития цивилизации.

Культуры многих традиционных обществ (Древней Индии, Древнего Китая, Египта и Вавилона) не создавали таких предпосылок. Хотя в них возникло множество конкретных видов научного знания и рецептур решения задач, все эти знания и рецептуры не выходили за рамки преднауки.

Переход к науке в собственном смысле слова был связан с двумя переломными состояниями развития культуры и цивилизации. Во-первых, с изменениями в культуре античного мира, которые обеспечили применение научного метода в математике и вывели её на уровень теоретического исследования, во-вторых, с изменениями в европейской культуре, произошедшими в эпоху Возрождения и перехода к Новому времени, когда собственно научный способ мышления стал достоянием естествознания (главным процессом здесь принято считать становление эксперимента как метода изучения природы, соединение математического метода с экспериментом и формирование теоретического естествознания).

Нетрудно увидеть, что речь идёт о тех мутациях в культуре, которые обеспечивали в конечном итоге становление техногенной цивилизации. Развитая наука утвердилась именно в этой линии цивилизационного развития, но исторический путь к ней не был простым и прямолинейным. Отдельные предпосылки и пробы развёртывания научного метода неоднократно осуществлялись в разных культурах. Некоторые из них сразу попадали в поток культурной трансляции, другие же как бы отодвигались на периферию, а затем вновь получали второе дыхание, как это случилось, например, с многими идеями Античности, воссозданными в эпоху Ренессанса.

Для перехода к собственно научной стадии необходим был особый способ мышления (видения мира), который допускал бы взгляд на существующие ситуации бытия, включая ситуации социального общения и деятельности, как на одно из возможных проявлений сущности (законов) мира, которая способна реализоваться в различных формах, в том числе весьма отличных от уже осуществившихся. Такой способ мышления не мог утвердиться, например, в культуре кастовых и деспотических обществ Востока эпохи первых городских цивилизаций (где начиналась преднаука).

Доминирование в культурах этих обществ канонизированных стилей мышления и традиций, ориентированных прежде всего на воспроизведение существующих форм и способов деятельности, накладывало серьёзные ограничения на прогностические возможности познания, мешая ему выйти за рамки сложившихся стереотипов социального опыта. Полученные здесь знания о закономерных связях мира, как правило, сращивались с представлениями об их прошлой (традиция) либо сегодняшней практической реализации. Зачатки научных знаний вырабатывались и излагались в восточных культурах главным образом как предписания для практики и не обрели ещё статуса знаний о естественных процессах, развёртывающихся в соответствии с объективными законами 11.

ОСНОВАНИЯ НАУКИ

Можно выделить по меньшей мере три главных компонента оснований научной деятельности: идеалы и нормы исследования, научную картину мира и философские основания науки. Каждый из них, в свою очередь, внутренне структурирован. Охарактеризуем каждый из указанных компонентов и проследим, каковы их связи между собой и возникающими на их основе эмпирическими и теоретическими знаниями.

Первый уровень

Первый уровень представлен признаками, которые отличают науку от других форм познания (обыденного, стихийно-эмпирического познания, искусства, религиозно-мифологического освоения мира, и так далее). Например, в разные исторические эпохи по-разному понимались природа научного знания, процедуры его обоснования и стандарты доказательности. Но то, что научное знание отлично от мнения, что оно должно быть обосновано и доказано, что наука не может ограничиваться непосредственными констатациями явлений, а должна раскрыть их сущность, — все эти нормативные требования выполнялись и в античной, и в средневековой науке, и в науке нашего времени.

Второй уровень

Второй уровень содержания идеалов и норм исследования представлен исторически изменчивыми установками, которые характеризуют стиль мышления, доминирующий в науке на определённом историческом этапе её развития. Так, сравнивая древнегреческую математику с математикой Древнего Вавилона и Древнего Египта, можно обнаружить различия в идеалах организации знания. Идеал изложения знаний как набора рецептов решения задач, принятый в математике Древнего Востока, в греческой математике заменяется идеалом организации знания как дедуктивно развёртываемой системы, в которой из исходных посылок-аксиом выводятся следствия. Наиболее яркой реализацией этого идеала была первая теоретическая система в истории науки — евклидова геометрия.

При сопоставлении способов обоснования знания, господствовавших в средневековой науке, с нормативами исследования, принятыми в науке Нового времени, обнаруживается изменение идеалов и норм доказательности и обоснованности знания. В соответствии с общими мировоззренческими принципами, со сложившимися в культуре своего времени ценностными ориентациями и познавательными установками учёный Средневековья различал правильное знание, проверенное наблюдениями и приносящее практический эффект, и истинное знание, раскрывающее символический смысл вещей, позволяющее через чувственные вещи микрокосма увидеть макрокосм, через земные предметы соприкоснуться с миром небесных сущностей. Поэтому при обосновании знания в средневековой науке ссылки на опыт как на доказательство соответствия знания свойствам вещей в лучшем случае означали выявление только одного из многих смыслов вещи, причём далеко не главного смысла.

Становление естествознания в конце XVI — начале XVII века утвердило новые идеалы и нормы обоснованности знания. В соответствии с новыми ценностными ориентациями и мировоззренческими установками главная цель познания определялась как изучение и раскрытие природных свойств и связей предметов, обнаружение естественных причин и законов природы. Отсюда в качестве главного требования обоснованности знания о природе было сформулировано требование его экспериментальной проверки. Эксперимент стал рассматриваться как наиболее важный критерий истинности знания.

Можно показать далее, что уже после становления теоретического естествознания в XVII веке его идеалы и нормы претерпевали существенную перестройку. Вряд ли, например, физик XVII–XIX веков удовлетворился бы идеалами квантово-механического описания, в которых теоретические характеристики объекта даются через ссылки на характер приборов, а вместо целостной картины физического мира предлагаются две дополнительные картины, где одна даёт пространственно-временное, а другая причинно-следственное описание явлений. Классическая физика и квантово-релятивистская физика — это разные типы научной рациональности, которые находят своё конкретное выражение в различном понимании идеалов и норм исследования.

Наконец, в содержании идеалов и норм научного исследования можно выделить третий уровень, в котором установки второго уровня конкретизируются применительно к специфике предметной области каждой науки (математики, физики, биологии, социальных наук, и так далее). Например, в математике отсутствует идеал экспериментальной проверки теории, но для опытных наук он обязателен. В физике существуют особые нормативы обоснования её развитых математизированных теорий. Они выражаются в принципах наблюдаемости, соответствия, инвариантности. Эти принципы регулируют физическое исследование, но они избыточны для наук, только вступающих в стадию теоретизации и математизации.

Современная биология не может обойтись без идеи эволюции, и поэтому методы историзма органично включаются в систему её познавательных установок. Физика же пока не прибегает в явном виде к этим методам. Если в биологии идея развития распространяется на законы живой природы (эти законы возникают вместе со становлением жизни), то в физике до последнего времени вообще не ставилась проблема происхождения действующих во Вселенной физических законов. Лишь в последней трети XX века благодаря развитию теории элементарных частиц в тесной связи с космологией, а также достижениям термодинамики неравновесных систем (концепция И. Пригожина) и синергетики, в физику начинают проникать эволюционные идеи, вызывая изменения ранее сложившихся дисциплинарных идеалов и норм.

Специфика исследуемых объектов непременно сказывается на характере идеалов и норм научного познания, и каждый новый тип системной организации объектов, вовлекаемый в орбиту исследовательской деятельности, как правило, требует трансформации идеалов и норм научной дисциплины. Но не только спецификой объекта обусловлено их функционирование и развитие. В их системе выражен определённый образ познавательной деятельности, представление об обязательных процедурах, которые обеспечивают постижение истины. Этот образ всегда имеет социокультурную размерность. Он формируется в науке под влиянием социальных потребностей, испытывая воздействие мировоззренческих структур, лежащих в фундаменте культуры той или иной исторической эпохи. Эти влияния определяют специфику обозначенного выше второго уровня содержания идеалов и норм исследования, который выступает базисом для формирования нормативных структур, выражающих особенности различных предметных областей науки. Именно на этом уровне наиболее ясно прослеживается зависимость идеалов и норм науки от культуры эпохи, доминирующих в ней мировоззренческих установок и ценностей.

Поясним вышеизложенное примером. Когда известный естествоиспытатель XVIII века Ж. Бюффон знакомился с трактатами натуралиста эпохи Возрождения Альдрованди, он выражал крайнее недоумение по поводу ненаучного способа описания и классификации явлений в его трактатах.

Например, в трактат о змеях Альдрованди наряду со сведениями, которые естествоиспытатели последующих эпох отнесли бы к научному описанию (виды змей, их размножение, действие змеиного яда и так далее), включил описания чудес и пророчеств, связанных с тайными знаками змеи, сказания о драконах, сведения об эмблемах и геральдических знаках, о созвездиях Змеи, Змееносца, Дракона и связанных с ними астрологических предсказаниях, и так далее 11.

Такие способы описания были реликтами познавательных идеалов, характерных для культуры средневекового общества. Они были порождены доминирующими в этой культуре мировоззренческими установками, которые определяли восприятие, понимание и познание человеком мира. В системе таких установок познание мира трактовалось как расшифровка смысла, вложенного в вещи и события актом божественного творения. Вещи и явления рассматривались как дуально расщеплённые — их природные свойства воспринимались одновременно и как знаки божественного помысла, воплощённого в мире. В соответствии с этими мировоззренческими установками формировались идеалы и нормы объяснения и описания, принятые в средневековой науке. Описать вещь или явление значило не только зафиксировать признаки, которые в более поздние эпохи (в науке Нового времени) квалифицировались как природные свойства и качества вещей, но и обнаружить «знаково-символические» признаки вещей, их аналогии, «созвучия» и «перекличку» с другими вещами и событиями Универсума.

Поскольку вещи и явления воспринимались как знаки, а мир трактовался как своеобразная книга, написанная «божьими письменами», постольку словесный или письменный знак и сама обозначаемая им вещь могли быть уподоблены друг другу. Поэтому в описаниях и классификациях средневековой науки реальные признаки вещи чаек» объединяются в единый класс с символическими обозначениями и языковыми знаками. С этих позиций вполне допустимо, например, сгруппировать в одном описании биологические признаки змеи, геральдические знаки и легенды о змеях, истолковав все это как различные виды знаков, обозначающих некоторую идею (идею змеи), вложенную в мир божественным помыслом.

Перестройка идеалов и норм средневековой науки, начатая в эпоху Возрождения, осуществлялась на протяжении довольно длительного исторического периода. На первых порах новое содержание облекалось в старую форму, а новые идеи и методы соседствовали со старыми. Поэтому в науке Возрождения мы встречаем наряду с принципиально новыми познавательными установками (требование экспериментального подтверждения теоретических построений, установка на математическое описание природы) и довольно распространённые приёмы описания и объяснения, заимствованные из прошлой эпохи.

Показательно, что вначале идеал математического описания природы утверждался в эпоху Возрождения, исходя из традиционных для средневековой культуры представлений о природе как книге, написанной «божьими письменами». Затем эта традиционная мировоззренческая конструкция была наполнена новым содержанием и получила новую интерпретацию: «Бог написал книгу природы языком математики».

Итак, первый блок оснований науки составляют идеалы и нормы исследования. Они образуют целостную систему с достаточно сложной организацией. Эту систему, если воспользоваться аналогией А. Эдлингтона, можно рассмотреть как своего рода «сетку метода», которую наука «забрасывает в мир» с тем, чтобы «выудить из него определённые типы объектов». «Сетка метода» детерминирована, с одной стороны, социокультурными факторами, определёнными мировоззренческими презумпциями, доминирующими в культуре той или иной исторической эпохи, с другой — характером исследуемых объектов. Это означает, что с трансформацией идеалов и норм меняется «сетка метода» и, следовательно, открывается возможность познания новых типов объектов.

Определяя общую схему метода деятельности, идеалы и нормы регулируют построение различных типов теорий, осуществление наблюдений и формирование эмпирических фактов. Они как бы вплавляются, впечатываются во все эти процессы исследовательской деятельности. Исследователь может не осознавать всех применяемых в поиске нормативных структур, многие из которых ему представляются само собой разумеющимися. Он чаще всего усваивает их, ориентируясь на образцы уже проведённых исследований и на их результаты. В этом смысле процессы построения и функционирования научных знаний демонстрируют идеалы и нормы, в соответствии с которыми создавались научные знания. В системе таких знаний и способов их построения возникают своеобразные эталонные формы, на которые ориентируется исследователь. Так, например, для Ньютона идеалы и нормы организации теоретического знания были выражены евклидовой геометрией, и он создавал свою механику, ориентируясь на этот образец. В свою очередь, ньютоновская механика была своеобразным эталоном для Ампера, когда он поставил задачу создать обобщающую теорию электричества и магнетизма.

Вместе с тем историческая изменчивость идеалов и норм, необходимость вырабатывать новые регулятивы исследования порождают потребность в их осмыслении и рациональной экспликации. Результатом такой рефлексии над нормативными структурами и идеалами науки выступают методологические принципы, в системе которых описываются идеалы и нормы исследования.

НАУЧНАЯ КАРТИНА МИРА

Второй блок оснований науки составляет научная картина мира. В развитии современных научных дисциплин особую роль играют обобщённые схемы — образы предмета исследования, посредством которых фиксируются основные системные характеристики изучаемой реальности. Эти образы часто именуют специальными картинами мира. Термин «мир» применяется здесь в специфическом смысле — как обозначение некоторой сферы действительности, изучаемой в данной науке («мир физики», «мир биологии», и так далее). Чтобы избежать терминологических дискуссий, имеет смысл пользоваться иным названием — картина исследуемой реальности 12. Наиболее изученным её образцом является физическая картина мира. Но подобные картины есть в любой науке, как только она конституируется в качестве самостоятельной отрасли научного знания.

Обобщённая характеристика предмета исследования вводится в картине реальности посредством представлений

· о фундаментальных объектах, из которых полагаются построенными все другие объекты, изучаемые соответствующей наукой;

· о типологии изучаемых объектов;

· об общих закономерностях их взаимодействия;

· о пространственно-временной структуре реальности.

Все эти представления могут быть описаны в системе онтологических принципов, по средством которых эксплицируется картина исследуемой реальности и которые выступают как основание научных теорий соответствую щей дисциплины. Например, принципы: мир состоит из неделимых корпускул; их взаимодействие осуществляется как мгновенная перс дача сил по прямой; корпускулы и образованные из них тела перемещаются в абсолютном пространстве с течением абсолютного времени — описывают картину физического мира, сложившуюся во второй половине XVII века и получившую впоследствии название механической картины мира.

Переход от механической к электродинамической (последняя четверть XIX века), а затем к квантово-релятивистской картине физической реальности (первая половина XX века) сопровождался изменением системы онтологических принципов физики. Особенно радикальным он был в период становления квантово-релятивистской физики (пересмотр принципов неделимости атомов, существования абсолютного пространства — времени, лапласовской детерминации физических процессов).

По аналогии с физической картиной мира можно выделить картины реальности в других науках (химии, биологии, астрономии и так далее). Среди них также существуют исторически сменяющие друг друга типы картин мира, что обнаруживается при анализе истории науки. Например, принятый химиками во времена Лавуазье образ мира химических процессов был мало похож на современный. В качестве фундаментальных объектов полагались лишь некоторые из известных ныне химических элементов. К ним приплюсовывался ряд сложных соединений (например, извести), которые в то время относили к «простым химическим субстанциям». После работ Лавуазье флогистон был исключён из числа таких субстанций, но теплород ещё числился в этом ряду.


Поделиться:



Последнее изменение этой страницы: 2017-05-06; Просмотров: 1445; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.043 с.)
Главная | Случайная страница | Обратная связь