![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Полупроводниковый мостовой выпрямитель
Мостовая схема Мостовая схема выпрямления изображена на рис и состоит из трансформатора Т и четырех диодов VD-VD4. Диагональ АВ моста подключена к вторичной обмотке трансформатора, а диагональ CD - к нагрузке. Полярность напряжения на вторичной обмотке изменяется каждую половину периода,
Рис. 8.8
в результате чего при более высоком потенциале точки А (+) по сравнению с потенциалом точки В (-) ток проходит в течение полупериода по пути
Таким образом, выпрямленный ток идет через нагрузку R в течение всего периода переменного тока, поэтому мостовая схема является двухполупериодной. В мостовой схеме выпрямленный ток и напряжение имеют такую же форму, как и в двухполупериодной схеме со средней точкой значение выпрямленного тока равно:
а выпрямленного напряжения:
Без нагрузки (10 =0) напряжение на зажимах выпрямителя будет равно:
Однополупериодный выпрямитель использует только одну полуволну переменного напряжения. Как следствие, постоянное напряжение низкое по величине и имеет значительные пульсации. Этого недостатка удается избежать в случае мостового выпрямителя со схемой (рис. 8.9). Здесь полуволны противоположной полярности суммируются, и среднее значение выпрямленного напряжения увеличивается в два раза.
Рис. 8.9.
Трехфазные схемы выпрямления Простейшая трехфазная схема выпрямления тока с нейтральной точкой изображена на рисунке 8.10, а. В ней схеме первичные обмотки трехфазного трансформатора соединяются звездой или треугольником, а вторичные — звездой, причем в каждую вторичную обмотку включено по диоду. В этом случае в каждый момент, выпрямленный ток проходит только через тот диод, анод которого соединен с зажимом обмотки, имеющим наибольший положительный потенциал по отношению к нейтральной точке трансформатора. Поэтому выпрямленное напряжение будет изменяться по кривой, являющейся огибающей положительных полуволн фазных напряжений вторичных обмоток трансформатора (рис. 8.10, б). Переключение диодов происходит в моменты, соответствующие пересечению положительных полусинусоид напряжения. В нагрузке R н токи, походящие через три диода, суммируются.
Рис. 8.10 а) б) Существенным недостатком этой схемы является то, что проходящие только через вторичные обмотки токи одного направления (выпрямленный ток) создают во взаимно связанных стержнях трехфазного трансформатора дополнительный постоянный магнитный поток. Чтобы не допустить насыщения магнитной системы за счет этого дополнительного потока, приходится увеличивать сечение стержней и габариты трансформатора. Трехфазную схему выпрямления с нейтральной точкой применяют только в маломощных силовых установках. Мостовая трехфазная схема выпрямления переменного тока изображена на рисунке 8.11. В ней сочетаются принципы мостовой схемы и схемы многофазного выпрямления. В этой схеме нулевая точка трансформатора для выпрямления не нужна и поэтому первичные и вторичные обмотки могут быть соединены как звездой, так и треугольником. Рис. 8.11 Шесть диодов образуют две группы — нечетную D1, D3 и D5 и четную Д, D4n Dg.У нечетной группы катоды соединены вместе и служат точкой вывода выпрямителя с положительным потенциалом, а у четной группы — аноды соединены вместе и служат точкой вывода с отрицательным потенциалом. При работе этой схемы выпрямляются обе полуволны переменных напряжений всех вторичных обмоток трансформатора, благодаря чему пульсации выпрямленного напряжения значительно уменьшаются. Выпрямленное напряжение будет изменяться с двойной частотой пульсаций (рис. 8.12). Рис. 8.12 В мощных выпрямителях в основном используется мостовая трехфазная схема. Она получила широкое применение в управляемых выпрямителях, в которых, регулируя моменты открывания и закрывания диодов (тиристоров), можно в широких пределах регулировать среднее значение выпрямленного тока.
Сглаживающие фильтры Рассмотренные схемы выпрямления переменного тока позволяют получать выпрямленное, но пульсирующее напряжение. Для питания электронных приборов пульсирующее напряжение непригодно: оно создает фон переменного тока, вызывает искажения сигналов и приводит к неустойчивой работе приборов. Для устранения пульсаций (сглаживания) применяют сглаживающие фильтры. Сглаживающий фильтр состоит из реактивных элементов: конденсаторов и катушек индуктивности (дросселей). Сущность работы сглаживающего фильтра состоит в разделении пульсирующего тока i(t) на постоянную 10 и переменную /_ составляющие (рис. 8.13). Постоянная составляющая направляется в нагрузку, а нежелательная переменная, замыкается через конденсатор, минуя нагрузку.
Физическая сущность работы в фильтре конденсатора и дросселя состоит в том, что конденсатор (обычно большой емкости), подключенный параллельно нагрузке, заряжается при нарастании импульсов выпрямленного напряжения и разряжается при их убывании, сглаживая тем самым его пульсации. Дроссель, наоборот, при нарастании импульсов выпрямленного тока в результате действия ЭДС самоиндукции задерживает рост тока, а при убывании импульсов задерживает его убывание, сглаживая пульсации тока в цепи нагрузки. С другой стороны, конденсатор и дроссель можно рассматривать как некие резервуары энергии. Они запасают ее, когда ток в цепи нагрузки превышает среднее значение, и отдают, когда ток стремится уменьшиться ниже среднего значения. Это и приводит к сглаживанию пульсаций.
Экспериментальная часть
Задание 1 Снять вольтамперную характеристику полупроводникового диода в прямом и обратном направлениях.
|
Последнее изменение этой страницы: 2017-05-11; Просмотров: 671; Нарушение авторского права страницы