Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Фотолабораторный процесс в рентгенологии. № 23 Фотохимическая обработка рентгеновских пленок. Дефекты и артефакты при автоматической проявке. Причины их устранения.



Методика рентгенографии

Исследование внутренних структур объекта, которые проецируются при помощи рентгеновских лучей на фоточувствительных материалах (рентгеновской пленке или бумаге)

Преимущества рентгенографии:

Широкая доступность метода и легкость проведения исследования

Не требует специальной подготовки пациентов

Относительно низкая стоимость исследования

Рентгенограммы могут быть использованы другими специалистами, что позволяет избежать повторного исследования и оценить динамику патологического процесса

Является медицинским документом

Недостатки рентгенографии:

Статичность изображения, не дающая возможность оценить функции органов

Наличие ионизирующего излучения, оказывающего вредное воздействие на исследуемый объект

Информативность классической рентгенографии ниже современных методов визуализации из-за проекционного наслоения сложных анатомических структур

Мало информативна для исследования мягких тканей

Сложный фотохимический процесс обработки пленки

Трудность архивирования пленки

Технический брак при производстве требует повторного исследования

Требуется значительное время для обработки пленки

Виды рентгенограмм:

Обзорная рентгенограмма

Прицельная рентгенограмма

Контактная рентгенограмма

Касательная рентгенограмм

 

№ 5 Получение рентгеновского изображения на экране- метод рентгеноскопии (способ получения изображения, основные позиции больного при просвечивании). № 6 Получение рентгеновского изображения на экране – метод рентгеноскопии (преимущества и недостатки).

Методика рентгеноскопии:

Исследование внутренней структуры и функциональных изменений органов и систем, при котором изображение получается на светящемся флюрореминисцентом экране в настоящий момент времени.

Ортоскопия – обследование больного в вертикальном положении (в прямых, боковых, косых проекциях и с разными наклонами его туловища) при горизонтальном ходе рентгеновских лучей.

Трохоскопия – проводится при лежачем положении больного с вертикальным направлением рентгеновских лучей.

Латероскопия – лежачее положение больного, но лучи проходят горизонтально.

Преимущества рентгеноскопии:

Исследование осуществляется в реальном масштабе времени (здесь и сейчас)

Дает возможность оценить функцию исследуемого объекта

Дает возможность быстро локализовать патологический очаг

Дает возможность контролировать проведение инструментальных процедур и оперативных вмешательств

Недостатки рентгеноскопии:

Высокая доза облучения пациента

Низкое пространственное разрешение

Субъективизм оценки полученных результатов

Не является медицинским документом

Не дает возможность оценки динамики функциональных изменений

 

№7 Флюорография. Принцип получения изображения, преимущества и недостатки метода.

Флюрография:

Рентгенологическое исследование, которое заключается в фотографировании флюрореминисцентного экрана, на который спроецировано рентгенологическое изображение исследуемого объекта

Виды флюрографии:

Мелкокадровая- снимки размерами 24х24 мм или 35х35 мм

Крупнокадровая – снимки размерами 70х70 мм или 100х100 мм

Преимущества флюорографии:

Быстрота исследования

Низкие затраты на проведение исследования

Небольшие лучевые нагрузки на персонал

Удобное хранение архива

Недостатки флюрографии:

Большая лучевая нагрузка на пациента

Большие габариты флюрографов

Большая лучевая нагрузка на популяцию в целом

 

№ 8 Послойное рентгенологическое исследование (томография) Принцип получения изображения, понятия: «томографический слой», «шаг». № 9 Послойное рентгенологическое исследование (томография). Зонограмма: принцип получения изображения.

Томография — послойное рентгенологическое исследование

Томография — это метод рентгенографии отдельных слоев человеческого тела. На обычной рентгенограмме получается суммационное изображение всей толщи исследуемой части тела. Изображения одних анатомических структур частично или полностью накладываются на изображение других. В силу этого теряется тень многих важных структурных элементов органов. Томография служит для получения изолированного изображения структур, расположенных в какой-либо одной плоскости, т. е. как бы для расчленения суммационного изображения на составляющие его изображения отдельных слоев объекта. Отсюда название метода — томография (от греч. tomos — слой).

Эффект томографии достигается посредством непрерывного движения во время съемки двух или трех компонентов рентгеновской системы — излучателя, пациента, пленки. Чаще всего перемещают излучатель (трубку) и пленку, в то время как пациент остается неподвижным. При этом излучатель и пленка движутся по дуге, линии или более сложной траектории, но обязательно во взаимно противоположных направлениях. При таком перемещении изображение большинства деталей на рентгенограмме оказывается нечетким, размазанным. А резкое изображение дают только те образования, которые находятся на уровне центра вращения системы трубка — пленка.

Конструктивно томографы выполняют в виде отдельных рентгеновских аппаратов или специальных приспособлений (приставок) к обычным рентгеновским установкам. Приставка представляет собой механизм для перемещения излучателя и кассеты во время съемки.

«Томографический слой» - это выбираемый пласт исследуемого органа, все элементы которого находят четкое изображение на томограмме.

«Шаг» - это расстояние, определяющее разницу высоты двух смежных томографических слоев.

Зонограмма- разновидность томограммы, при которой получают изображения слоев большой толщины, используя малые углы качания движущейся системы томографа.

№ 10 Компютерная томография (КТ). Способ получения изображения, особенность радиографической пленки. № 11 Компьютерная томография (КТ). Преимущества и недостатки метода. Область применения КТ в медицине.

Компьютерная томография.

Метод послойного исследования внутренней структуры объекта. Основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями.

Приемник – кольцо Гентри. Та же цифра только приемник другой.

1972 г. – предложен способ КТ ( Корник, Хаунскинд – ученые).

1969 г. – изобретен первый сканер на основе математической модели предложенной в 1917 г. математиком Роденом.

Первые КТ были пошаговые – мы определяли размер этого шага. Время обработки – на один срез 20 секунд.

Веерный КТ – время обработки было 10-15 секунд.

Спиральный КТ – движение трубки было по спирали по часовой стрелке.

Мультиспиральный КТ с 1992 г. – несколько спиралей и время обработки 0, 7 секунды. Количество спиралей всегда кратно «4».

В кольце Гентри располагалось сразу несколько слоев детекторов – приемников.

В системах компьютерных томографов сканирование и получение изображения происходят следующим образом: рентгеновская трубка в режиме излучения «обходит» голову по дуге 2400, останавливаясь через каждые 30 этой дуги и делая продольное перемещение. На одной оси с рентгеновским излучателем закреплены детекторы – кристаллы йодистого натрия, преобразующие ионизирующее излучение в световое. Последнее попадает на фотоэлектронные умножители, превращающие эту видимую часть в электрические сигналы. Электрические сигналы подвергаются усилению, а затем преобразованию в цифры, которые вводят в ЭВМ. Рентгеновский луч, пройдя через среду поглощения, ослабляется пропорционально плотности тканей, встречающихся на его пути, и несет информацию о степени его ослабления в каждом положении сканирования. Интенсивность излучения во всех проекциях сравнивается с величиной сигнала, поступающего с контрольного детектора, регистрирующего исходную энергию излучения сразу же на выходе луча из рентгеновской трубки.

Важным условием для обеспечения проведения компьютерной томографии является неподвижное положение пациента, ибо движение во время исследования приводят к возникновению артефактов - наводок: полос темного цвета от образований с низким коэффициентом поглощения (воздух) и белых полос от структур с высоким КП (кость, металлические хирургические клипсы), что также снижает диагностические возможности.

Особенность радиографической/радиографической пленки.

Состав рентгеновской пленки:

- основа

- фотоэмульсия

Аналоговая рентгенография

Основа – гибкая достаточно прочная и прозрачная для видимого света пленка, изготавливается из целлюлозы (триацетат целлюлозы).

На основу с двух сторон наносится фотографическая эмульсия.

Для более прочной фиксации к основе она предварительно смазывается клеем (желатин + антибиотик).

Для защиты эмульсионного слоя от механических повреждений этот слой снаружи покрывается специальным водопроводимым лаком.

лак эмульсия клей основа клей эмульсия Лак  

Пленка

Пленка содержит 7 слоев.

Состав фотографической эмульсии:

- основной ингредиент светочувствительное вещество (бромистая соль серебра – галогенное серебро) наиболее чувствительному к рентгеновскому излучению и видимому свету.

Превращение галогенного серебра в восстановленное серебро.

Галогенное серебро ← свет + рентгеновские лучи

↓ ↕

Проявляющее вещество Восстановленное серебро

ArBr – под воздействием рентгеновских лучей связь между ними становится менее прочной, для полного разрыва связи нужно проявляющее вещество = пленку опускаем в проявитель (окончательно разрываем связь).

Далее кладем пленку в фиксаж/закрепитель → останавливаем процесс восстановления галоидного серебра.

Галоидное серебро чувствительно к свету (сине-фиолетовая область) и почти не реагирует на желтое и красное, инфракрасное излучение.

Фото эмульсия ↙ ↙ ↙ желтый (оранжевый

↘ ↘ ↘ сенсибилизированная пленка.

Синий + желтый = зеленочувствительная пленка.

Тем самым снизили количество серебра, но и структура снизилась.

Галоидное серебро не растворимо в воде. Его нельзя нанести тонким слоем.

Фотоэмульсия ↔ коллоиды = высыхает и набухает в холодной воде, становится проницаема для фоторастворов.

Коллоиды –это желатин, их добавляют в фотоэмульсию.

В рентгеновской пленке основным слоем является эмульсия. Самый необходимый компонент в нем –светочувствительное вещество (галоген серебра).

- при рентгеноскопии в эмульсии пленки образуется скрытое изображение;

- проявление рентгеновского снимка первый этап фотохимического процесса, который позволяет скрытое изображение перевести в видимое с последующим закреплением.

Достоинства КТ:

Очень высокая разрешающая способность;

Возможность математического анализа изображения и изменения плотности ( за «0» принята плотность воды, измерения производят в единицах Хаусфильда – Hu).

Все возможности цифровой рентгенографии;

Можем выполнять виртуальную ангиографию с применением йодсодержащих контрастов;

Можем измерить плотность костей;

Можно построить 3D любого патологического объекта и выполнить виртуальную операцию;

Можно выполнить качественное исследование костей;

Хорошо видны легкие;

Хорошо видна структура головного мозга и ликворосодержащие пространства.

Хуже видны мягкие ткани и паренхиматозные органы.

Недостатки:

Очень большая лучевая нагрузка;

Дороговизна исследования.

Получаем изображение:

Цифра;

Термопринтер.

№ 12 МРТ. Устройство МР-томографа.

Томографический метод исследования внутренних органов и тканей с использованием физического явления ядерного магнитного резонанса, основанного на измерении электромагнитного отклика ядер атомов водорода на возбуждение их определенной комбинацией электромагнитных волн в постоянном магнитном поле высокой напряженности.

Типы МРТ:

Ультранизкопольные (0, 1 тесла)

Низкопольные (0, 1 – 0, 5 тесла)

Среднепольные (0, 5-1, 0 тесла)

Высокопольные (1, 0-2, 0 тесла)

Ультравысокопольные ( свыше 2, 0 тесла).

Виды МРТ:

Открытые МРТ - открытый контур;

Закрытые МРТ – закрытый контур.

Виды исследований:

МРТ диффузия – поддерживает определенное движение молекул воды в тканях;

МРТ перфузия – определяет проходимость крови через ткани;

Спектроскопия МРТ – позволяет оценить биохимические изменения в тканях (метаболизм);

МРТ ангиография – получение изображения сосудов (иногда применяется контрастное вещество гадолиний);

МРТ холангиография;

Функциональная МРТ – дает возможность определить положение различных центров головного мозга (речь, слух и т.д.).

Противопоказания к МРТ:

Установленный кардиостимулятор;

Ферро – и электромагнитные имплантаты среднего уха;

Большие металлические имплантаты и осколки;

Ферримагнитные аппараты Илизарова;

Все металлоконструкции;

Кровоостанавливающие клипсы сосудов головного мозга.

Относительные противопоказания:

Инсулиновые насосы;

Стимуляторы;

Неметаллические имплантаты среднего уха;

Протезы клапанов сердца;

Кровоостанавливающие клипсы, кроме клипс головного мозга;

Некомпенсированная сердечная недостаточность;

Первый триместр беременности;

Клаустрофобия;

Необходимость физиологического мониторинга;

Искусственное поддержание функций организма;

Тяжелое состояние пациента.

Любой МР-томографа состоит из:

магнита, создающего постоянное магнитное поле, в которое помещают пациента;

градиентных катушек, создающих слабое переменное магнитное поле в центральной части основного магнита. Это поле называют градиентным. Оно позволяет выбрать область исследования части тела пациента;

передающих и принимающих радиочастотных катушек; передающие, используются для создания возбуждения в теле пациента, приемные — для регистрации ответа возбужденных участков;

компьютера, управляющего работой катушек, регистрацией, обработкой измеренных сигналов, реконструкцией МР-изображений.

Магнитное поле характеризуется индукцией магнитного поля, единицей измерения является Тл (тесла) по имени сербского учёного Николы Теслы.

Различают несколько типов томографов (зависит от величины постоянного магнитного поля):

0, 01 Тл — 0, 1 Тл → со сверхслабым полем;

0, 1 — 0, 5 Тл → со слабым полем;

0, 5 — 1.0 Тл → со средним полем;

1.0 — 2, 0 Тл → с сильным полем;

> 2, 0 Тл → со сверхсильным полем.

Существует три вида магнитов для мрт-томографа: резистивные, постоянные и сверхпроводящие.

Томографы с полем до 0, 3 Тл чаще всего имеют резистивные или постоянные магниты, выше 3, 0 Тл — сверхпроводящие.

Оптимальная напряженность магнитного поля является постоянным предметом дискуссий среди специалистов.

Более 90% магнитно-резонансных томографов составляют модели со сверхпроводящими магнитами (0, 5 - 1, 5 Тл). Томографы со сверхсильным полем (выше 3, 0 Тл) очень дороги в эксплуатации. Постоянные магниты напротив, дёшевы и просты в эксплуатации.

 

№ 13 МРТ. Получение изображения при МРТ.

Томографический метод исследования внутренних органов и тканей с использованием физического явления ядерного магнитного резонанса, основанного на измерении электромагнитного отклика ядер атомов водорода на возбуждение их определенной комбинацией электромагнитных волн в постоянном магнитном поле высокой напряженности.

Для получения изображения при магнитно-резонансной томографии (МРТ) используется магнитное поле. Это приводит к тому, что все атомы водорода в теле пациента выстраиваются параллельно направлению магнитного поля. В этот момент аппарат посылает электромагнитный сигнал, перпендикулярно основному магнитному полю. Атомы водорода, имеющие одинаковую с сигналом частоту, " возбуждаются" и генерируют свой сигнал, который улавливается аппаратом. Разные виды тканей (кости, мышцы, сосуды и т.д.) имеют различное количество атомов водорода и поэтому они генерируют сигнал с различными характеристиками. Компьютер распознает эти сигналы, дешифрует их и строит изображение.

Нормальные клетки органов и тканей, не пораженные болезненным процессом, имеют один уровень сигнала, “больные” клетки всегда другой, измененный в той или иной степени. За счет данного феномена на изображении, полученном в ходе МРТ, измененные патологическим процессом участки тканей и органов выглядят иначе, чем здоровые.

Изображения, полученные при МРТ, содержат огромный объём информации о строении органов и тканей в определённой анатомической зоне. Структура, взаимоотношение органов между собой, их размеры, конфигурация – вот основные параметры, которые мы оцениваем в ходе исследования.

 

№ 14 МРТ. Основные показания и противопоказания.

Противопоказания к проведению МРТ

Абсолютные:

Наличие кардиостимулятора;

Наличие эндопротезов и стабилизирующих систем из ферромагнитных сплавов;

Импланты среднего уха (несъёмные слуховые аппараты);

Состояние после клипирования сосудов головного мозга;

Наличие инородных металлических тел (осколки, пули).

Относительные:

(зависит от силы магнитного поля)

1-й триместр беременности;

Наличие клипс на сосудах (кроме внутричерепных);

Протезы клапанов сердца;

Стернальные проволочные швы;

Наличие внутрисосудистых стентов;

Декомпенсированные соматические состояния

Клаустрофобия.

Показания к проведению МРТ:

Неврология и нейрохирургия

Диагностика опухолей головного и спинного мозга и оценка их в динамике до и после лечения

Диагностика демиелинизирующих заболеваний головного и спинного мозга (рассеянный склероз), определение их активности, оценка динамики изменений

Диагностика воспалительных заболеваний головного и спинного мозга

Выявление артерио-венозных мальформаций головного и спинного мозга

Диагностика нарушений мозгового и спинального кровообращения и их последствий

Диагностика черепно-мозговых травм и их последствий

Диагностика пороков развития головного и спинного мозга

Оценка состояния гипофиза, диагностика наличия аденом, оценка динамики изменений

Оценка результатов оперативных вмешательств на головном, спинном мозге, позвоночнике

Травматология + ревматология

Травмы и заболевания суставов: плечевых суставов, локтевых суставов, кистей, тазобедренных суставов, коленных суставов, голеностопных суставов (опухоли, дегенеративные заболевания, хронические артриты, переломы, разрывы сухожилий и связок, повреждения менисков, вывихи, воспалительные заболевания).

Травмы и воспалительные заболевания позвоночника

Остеохондроз, диагностика грыж и протрузий межпозвонковых дисков

Опухоли костей и мягких тканей

Гинекология

Диагностика опухолей мочевого пузыря, матки, придатков и оценка распространенности их на прилежащие структуры

Диагностика воспалительных заболеваний органов малого маза (аднекситы)

 

Урология

Диагностика опухолей почек, мочевого пузыря, предстательной железы и оценка распространенности их на прилежащие структуры

Диагностика воспалительных заболеваний почек, мочевого пузыря, предстательной железы

Диагностика мочекаменной болезни

 

Гастроэнтерология

Диагностика опухолей печени, поджелудочной железы и оценка их в динамике

Диагностика желчекаменной болезни в т.ч. исследование желчных протоков на наличие в них конкрементов

Оценка тяжести травмы органов брюшной полости

Диагностика состояния печени (жировой гепатоз, цирроз) и оценка в динамике

Диагностика острых и хронических воспалительных заболеваний органов брюшной полости (гепатиты, панкреатиты)

Исследование крупных сосудов

Диагностика наличия атеросклероза

Аневризмы.

 

№ 15 Ультрасонография. Построение ультразвукового изображения. Виды датчиков. Область их применения.

Ультрасонография (Ultrasonography)

применение ультразвука, частота которого составляет примерно 30 000 Гц, для получения изображения глубоких структур тела. Ультразвуковой луч направляется на исследуемую поверхность тела через специальный датчик, применяющийся для исследования органов брюшной полости (для сравнения: ультрасонография чрезвлагалищная); эхо отраженного звука используется для формирования электронного изображения различных структур тела. Основанная на принципах подводной локации, ультрасонография позволяет наблюдать развитие плода в матке. Она применяется также для диагностирования беременности, определения срока беременности, диагностирования многоплодной беременности, неправильного предлежания плода и хорионадсномы; ультрасонография позволяет определить расположение плаценты и выявить некоторые аномалии развития плода.Виды датчиков:

1.конвексные - абдоминальные

2. микроконвексные (вагинальные, ректальные, транскраниальные – через родничок);

3. линейные (молочные железы, щитовидная железа, мышцы, сухожилия).

4. секторные – используются в кардиологии;

5. черезпищеводные ( смотрят сердце);

6. биплановые – 2 вместе любых;

7. 3D и 4D –объемные;

8. карандашные/слепые – отдельно приемник и излучатель;

9. видио-эндоскопические;

10. игольчатые/катетерные – внутриполостное введение препаратов в трудно доступные сосуды.

№ 16 Бронхография. Две основные методики бронхографии. Роль рентгенолаборанта.

Бронхография – рентгенологическое исследование бронхиального дерева, которое проводится после введения в бронхи рентгенконтрастного вещества, изготовленного на основе йода. После того, как контраст обволакивает стенки бронхов изнутри, они становятся хорошо заметны на рентгеновских снимках.

Ценность бронхографии

Основное преимущество бронхографии состоит в том, что она позволяет подробно изучить строение всего бронхиального дерева. В этом плане она часто оказывается эффективнее эндоскопического исследования – бронхоскопии.

Главные недостатки бронхографии:

исследование нужно проводить при помощи общей или местной анестезии, иначе оно доставит пациенту сильный дискомфорт;

применение общего наркоза у детей является обязательным;

анестетики и йодсодержащие препараты, которые применяются во время бронхографии, способны вызывать аллергические реакции;

бронхография предполагает лучевую нагрузку на организм, поэтому ее нельзя делать часто, у некоторых групп пациентов имеются противопоказания.

Подготовка к исследованию

Общие требования и рекомендации:

Если бронхография будет проводиться под местной анестезией, то пациент не должен принимать пищу за 2 часа до исследования. Если планируется общий наркоз, то это время удлиняется.

Накануне и в день проведения бронхографии должна быть выполнена тщательная гигиена ротовой полости.

Если пациент носит зубные протезы, то перед исследованием он должен их снять.

Перед проведением бронхографии нужно помочиться.

Проведение бронхографии

Бронхография проводится на стоматологическом кресле или на операционном столе, которому можно придать подходящую конфигурацию.

Обязательное оборудование кабинета для проведения бронхографии:

рентгеновский аппарат;

катетер или бронхоскоп для введения контраста в легкие;

рентгеноконтрастное вещество;

реанимационный набор.

Ход исследования:

Пациента укладывают на стоматологическое кресло или операционный стол. Он должен занять максимально удобное и расслабленное положение – это облегчит проведение исследования.

Если бронхография проводится под общим наркозом. Анестезиолог дает пациенту масочный наркоз. После этого маску снимают с лица, проводят интубацию трахеи.

Если бронхография проводится под местной анестезией. При помощи спрея осуществляют анестезию ротовой полости. Затем вводят бронхоскоп, через который подают анестетик, а затем рентгеноконтрастное вещество.

Перед тем, как вводить в бронхи контраст, врач может выполнить бронхоскопию - осмотреть слизистую оболочку при помощи бронхоскопа.

Контраст должен равномерно заполнить бронхи и распределиться по их стенкам. Для этого пациента несколько раз переворачивают, придавая ему разные положения.

Затем выполняют серию рентгеновских снимков –в прямой, боковой и косой проекциях.

 

№ 17 Цифровая рентгенография. Получение цифрового изображения. Роль рентгенолаборанта.

Это преобразование традиционной рентгенограммы в цифровой массив с последующей возможностью обработки рентгенограмм методами вычислительной техники.

Сущность цифрового изображения:

- Рентгеновское изображение при преобразовании в цифровое разбивается на мельчайшие элементы – пиксели.

- Яркость которых определяется степенью поглащения излучения тканями.

- В результате получается матрица (основа) с размерностью: количество строк на количество столбцов.

- Размеры матрицы цифрового изображения составляют от 1024*1024 до 4096*4096;

- Яркость пикселя в цифровом рентгеновском изображении представлена 12 битами (оттенками), что позволяет одновременно дифференцировать как плотные, так и мягкие структуры.

Таким образом цифровая рентгенография имеет следующие преимущества:

-позволяет модулировать контрастность и яркость изображения;

-проводить обработку изображения (фильтровать, измерять, увеличивать);

-архивировать изображения на жестком диске и внешних носителях;

- сократить время исследования и лучевую нагрузку в 10 раз.

Способы образования цифры:

1. Аналоговый:

- прямой

- непрямой

2. цифровой

- прямой

- непрямой

Аналоговый

Приемное устройство – пленка/светящийся экран. При выполнении прямого аналогового исследования должна быть достаточная мощность рентгеновского излучения для получения качественного изображения на приемном устройстве.

Непрямое аналоговое рентгеновское исследование: энергия рентгеновского излучения при помощи специального устройства (УРИ) преобразуется в электроэнергию = на экране изображение.

Непрямая цифровая технология – непрямая аналоговая + цифра.

При такой технологии энергия рентгеновского излучения сначала преобразуется в электроэнергию при помощи УРИ, а затем преобразуется в цифру (два посредника).

Достоинства непрямой цифры:

Из-за отсутствия выполнения дополнительных исследований лучевая нагрузка снижается;

Есть возможность при помощи компьютера обработать рентгеновское изображение;

Удобство архивирования, возможность тиражировать бесконечное количество копий рентгеновского изображения;

Возможность консультаций он-лайн.

Способы установки цифры:

Установка оцифровщика непосредственно на рентгеновский аппарат;

Использование специальных электрических кассет с обработкой их в дигитайзере (устройство в самой кассете).

Недостатки:

Изображение виртуальное;

Повышается стоимость исследования.

Прямая цифра:

С рентгеновской трубки сразу на цифру. При применении цифровой технологии происходит преобразование рентгеновского излучения в цифровое при меньшей мощности излучения и обработке ЭВМ при маленькой лучевой нагрузке получаем качественное рентгеновское изображение.

Преимущества цифры:

Снижение лучевой нагрузки в 8-10 раз меньше, чем аналоговое;

Более высокая разрешающая способность;

Дает возможность точнее оценить характер патологического очага;

Возможность компьютерной обработки изображения и его математического анализа = избегаем субъективности оценки изображения;

Быстрота получения изображения на экране компьютера, так как исключается длительный фотохимический процесс;

Удобство архивирования и анализа динамики изменений;

Консультации он-лайн.

Недостатки - см. выше непрямую цифру.

 

№ 19 Фотохимическая обработка рентгеновских пленок. Ручная проявка. № 20 Фотохимическая обработка рентгеновских пленок Автоматическая фотообработка. №21 Фотохимическая обработка рентгеновских пленок. Виды проявочных машин.№ 22 Фотохимическая обработка рентгеновских пленок. Дефекты и артефакты при ручной проявке. Причины их устранения.

Фотолабораторный процесс в рентгенологии.

Рентгеновское изображение возможно получить на многих носителях содержащих фотоэмульсию (кассета/рентгеновская пленка).

Состав рентгеновской пленки:

- основа

- фотоэмульсия

Аналоговая рентгенография

Основа – гибкая достаточно прочная и прозрачная для видимого света пленка, изготавливается из целлюлозы (триацетат целлюлозы).

На основу с двух сторон наносится фотографическая эмульсия.

Для более прочной фиксации к основе она предварительно смазывается клеем (желатин + антибиотик).

Для защиты эмульсионного слоя от механических повреждений этот слой снаружи покрывается специальным водопроводимым лаком.

лак эмульсия клей основа клей эмульсия Лак  

Пленка

Пленка содержит 7 слоев.

Состав фотографической эмульсии:

- основной ингредиент светочувствительное вещество (бромистая соль серебра – галогенное серебро) наиболее чувствительному к рентгеновскому излучению и видимому свету.

Превращение галогенного серебра в восстановленное серебро.

Галогенное серебро ← свет + рентгеновские лучи

↓ ↕

Проявляющее вещество Восстановленное серебро

ArBr – под воздействием рентгеновских лучей связь между ними становится менее прочной, для полного разрыва связи нужно проявляющее вещество = пленку опускаем в проявитель (окончательно разрываем связь).

Далее кладем пленку в фиксаж/закрепитель → останавливаем процесс восстановления галоидного серебра.

Галоидное серебро чувствительно к свету (сине-фиолетовая область) и почти не реагирует на желтое и красное, инфракрасное излучение.

Фото эмульсия ↙ ↙ ↙ желтый (оранжевый

↘ ↘ ↘ сенсибилизированная пленка.

Синий + желтый = зеленочувствительная пленка.

Тем самым снизили количество серебра, но и структура снизилась.

Галоидное серебро не растворимо в воде. Его нельзя нанести тонким слоем.

Фотоэмульсия ↔ коллоиды = высыхает и набухает в холодной воде, становится проницаема для фоторастворов.

Коллоиды –это желатин, их добавляют в фотоэмульсию.

В рентгеновской пленке основным слоем является эмульсия. Самый необходимый компонент в нем –светочувствительное вещество (галоген серебра).

- при рентгеноскопии в эмульсии пленки образуется скрытое изображение;

- проявление рентгеновского снимка первый этап фотохимического процесса, который позволяет скрытое изображение перевести в видимое с последующим закреплением.

Проявление:

- ручное;

- автоматическое.

Ручная обработка рентгенограмм;

- проявление;

- промежуточная промывка;

- фиксирование/закрепление;

- окончательная промывка;

- сушка.

Проявление.

- первый этап фотохимического процесса, который позволяет перевести скрытое изображение в видимое.

Делается это в специальных баках (4 штуки).

1 бак – проявитель – крышка красного цвета, проявитель состоит из трех компонентов (А, В, С).

Сначала наливаем воду комнатной температуры.

С – желтого цвета
В – оранжевый/красный
А
вода

Наливая каждый следующий компонент перемешиваем все вместе деревянной палочкой. Когда все готово даем постоять 5-10 минут.

Если компонент «В» темно бурого цвета – его использовать нельзя!!!

Проявитель – это комплексное соединение:

- проявляющие вещества;

- сохраняющие вещества;

- ускоряющие вещества;

- Противовуальные вещества.

Проявляющие вещества:

- метол (детальное, но малоконтрастное проявление) – детализация изображения;

- гидрохинон (значительно повышает контрастность изображения) – почернение снимка;

- фенидон (по проявляющей способности слабее метола, действие аналогичное).

Сохраняющие вещества:

- сульфит натрия;

- метабисульфит калия.

Функция- нейтрализовать в проявителе окислительные процессы. Среда в проявителе всегда щелочная. Гидрохинон не может работать в кислой среде.

Ускоряющие вещества:

- для поддержания постоянства щелочной среды

- улучшает набухание желатина в эмульсии

- повышает глубину контакта проявляющего вещества с галоидным серебром:

- углекислый натрий (калий)

 

Противовуаливые вещества

При проявлении уменьшают потемнение пленки из-за оптической вуали.

- бромистый калий

- бензотриазол/бензимидазол

- соли брома, образующееся при проявлении.

Оптическая вуаль образуется при проявлении.

Промежуточная промывка – бак №2 (вода, в течении 15-20 секунд).

Для удаления остатков проявители с поверхности пленки, чтобы щелочная среда в проявителе не загрязняла щелочную среду фиксажа.

Бак № 3- кислая среда.

Фиксаж/ закрепитель – синего цвета.

Фиксирование – после проявления в эмульсии изображение в виде восстановленного в различной степени металлического серебра и его не восстановленная галоидная форма, которая требует удаления из эмульсии.

Незафиксированный снимок темнеет, изображение в нем разрушается.

Состав фиксажа:

- натрия серноватистокислый гипосульфит (растворяет не восстановленное серебро);

- натрия сернокислый (стабилизирует гипосульфит в растворе);

- кислоты: серная, уксусная (создание кислой среды – эффективное закрепление изображения;

- хлористый аммоний (нашатырь) для ускорения закрепления изображения, позволяет сократить время фиксажа в разы.

При добавлении в фиксаж алюминия или хромокалиевые кварцы – дубящие фиксаж (предотвращают чрезмерное набухание эмульсии и ее сползание с подложки = для автопроявки, при высоких температурах. Проявитель подогреваем. Проявитель в конце рабочего дня меняем (при ручной проявке). Фиксаж – 2-3 дня (ручная проявка).

Окончательная промывка:

- полное удаление из эмульсии пленки всех химических веществ (проточной водой) – протяженность этого процесса 25-30 минут.

Сушка.

Средняя продолжительность отдельных этапов фотохимической обработки:

процесс Продолжительность в мин. Температура
проявление 8, 0
Промежуточная промывка 0, 5
Фиксирование 12, 5
Окончательная промывка 20, 0
Сушка Дополнительного высыхания Не более 30

Автопроявка отличается в процентном соотношении элементов для проявки.

- проявление;

- фиксирование;

- окончательная промывка;

- сушка.

Промежуточную проявку заменяют валики убирающие остатки растворов и лишнюю воду, а также они передвигают снимки из одного отсека в другой.

Проявочные машины:

По принципу работы:

- в темном помещении;

- в светлом помещении.

По скорости: (от сухого до сухого снимка)

- среднескоростные (3, 5 минуту; 28 градусов);

- скоростные (90 секунд; 36 градусов);

- сверхскоростные (45-60 секунд; 40 градусов).


Поделиться:



Последнее изменение этой страницы: 2017-05-04; Просмотров: 5932; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.187 с.)
Главная | Случайная страница | Обратная связь