Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Фотофизические процессы, лежащие в основе фотосинтеза
В темноте молекула хлорофилла находится в стабильном невозбужденном состоянии, а ее электроны – на основном энергетическом уровне. Когда квант света попадает на молекулу хлорофилла, порция энергии этого кванта поглощается одним из электронов, который переходит на новый, более богатый энергией уровень, а молекула хлорофилла переходит при этом в возбужденное состояние. В зависимости от того, какова энергия поглощенного кванта, электрон может перейти на разные энергетические уровни: квант синего света поднимает электрон на второй синглетный уровень, квант красного света – на первый. Время жизни молекулы хлорофилла в возбужденных синглетных состояниях очень коротко (на втором синглетном уровне – 10– 12–10– 13с, на первом – 10– 9–10– 7с), после чего молекула возвращается в исходное стабильное состояние, и энергия, поглощенная электроном, теряется им в виде тепла, флюоресценции или фосфоресценции. Основная масса хлорофилла и других фотосинтетических пигментов клетки представляет собой антенну, улавливающую световую энергию. Энергия возбуждения мигрирует в направлении от пигментов, поглощающих свет более коротких длин волн, к более длинноволновым формам и от последних поступает в реакционные центры. В то время как основная масса фотосинтетических пигментов способна только поглощать энергию света и передавать ее соседним молекулам, небольшая часть молекул хлорофилла участвует в осуществлении фотохимической реакци. Процесс этот происходит в реакционных центрах, состоящих из первичного донора электронов, первичного акцептора и одного или более вторичных акцепторов электронов. Кроме того, в составе реакционных центров обнаружены молекулы каротиноидов и полипептидов. При поглощении кванта света реакционным центром первичный донор электронов (Д), которым всегда является длинноволновая форма молекулы хлорофилла или бактериохлорофилла, возбуждается, переходит в новое состояние (Д*), в котором становится активным восстановителем, и переносит электрон на первичный акцептор электронов (А). Чтобы предотвратить возвращение электрона на Д+, вторичный акцептор (В) принимает электрон от первичного акцептора и стабилизирует таким способом разделение зарядов. Для дальнейшей стабилизации этого разделения вторичный донор электронов (Е), в качестве которого почти всегда выступают цитохромы типа с, отдает электрон на молекулу первичного донора (Д+) (слайд 12.25). Эти реакции происходят в реакционном центре и являются «первичными» химическими реакциями фотосинтеза. Таким образом, индуцированные светом перемещения электрона в реакционном центре в конечном итоге приводят к переносу его на вторичный акцептор с отрицательным потенциалом. После того, как вторичный акцептор захватывает электрон, он передается на переносчики электронов, и по этим переносчикам электрон может возвращаться на «свое» место в молекуле хлорофилла. Последним переносчиком, с которого электроны поступают на хлорофилл реакционного центра, в большинстве случаев служат цитохромы типа с. Возвращение электрона – темновой процесс. Электрон перемещается по цепи переносчиков в соответствии с электрохимическим градиентом. Имеет место циклический транспорт электронов. Электрон, «оторванный» от первичного донора реакционного центра, может по цепи, состоящей из других переносчиков, не возвращаться к молекуле хлорофилла, а передаваться на такие клеточные метаболиты, как НАД(Ф)+ или окисленный ферредоксин, которые используются в реакциях, требующих восстановителя. Таким образом, электрон, покинувший молекулу хлорофилла, выводится из «системы». Возникает однонаправленный незамкнутый электронный поток, получивший название нециклического пути переноса электронов. У пурпурных и зеленых нитчатых бактерий функционирует только циклический светозависимый поток электронов. У остальных групп эубактерий фотоиндуцируется как циклический, так и нециклический перенос электронов. Фосфорилирование, сопряженное с циклическим потоком электронов, получило название циклического фотофосфорилирования. Соответственно, нециклическим фотофосфорилированием называют синтез АТФ, сопряженный с нециклическим электронным транспортом. При циклическом электронном транспорте восстановитель не образуется, поскольку электрон, покинувший молекулу хлорофилла, в конечном итоге вновь возвращается к ней. Образование восстановителя возможно только на путях нециклического переноса электронов. Нециклический транспорт электронов приводит к тому, что в молекуле хлорофилла возникает электронная «вакансия», которую необходимо заполнить, чтобы молекула пигмента могла функционировать. Для этой цели сформировался поток электронов, донорами которых являются легко окисляемые экзогенные вещества. Это могут быть как органические, так и неорганические соединения. В последнем случае это в основном различные восстановленные соединения серы, а также молекулярный водород (слайд 12.26). У пурпурных и зеленых нитчатых бактерий, у которых функционирует только светозависимый циклический электронный транспорт, нет надобности в заполнении электронной «вакансии» в молекуле хлорофилла. В то же время проблема получения фотохимическим путем восстановителя не решена. Конкретные пути, ведущие к получению восстановленного НАД или ферредоксина, зависят от окислительно-восстановительного потенциала экзогенных доноров электронов. Таким образом, на определенном этапе эволюции эубактерий сформировался способ получения энергии, в основе которого лежит использование энергии света, и для функционирования этого пути необходимы определенные экзогенные вещества. Следующий принципиально важный шаг на пути эволюции фотосинтеза и фотосинтезирующих организмов – способность использовать воду в качестве донора электронов (слайд 12.27). Природа решила эти проблемы путем создания дополнительной пигментной системы, обозначаемой как фотосистема II (слайд 12.28). Известны две группы эубактерий, у которых фотосистема II уже сформировалась. Это цианобактерии и прохлорофиты. Формирование II фотосистемы у них связано с появлением новых фоторецепторов и образованием новых типов фотохимических реакционных центров (слайд 12.29). 1). Возник новый вид хлорофилла – хлорофилл а, функционирующий как светособирающий пигмент и в модифицированных формах входящий в состав реакционных центров: II фотосистемы – П680, I фотосистемы – П700. 2). Возникли новые пигменты антенны: фикобилипротеины и хлорофилл b. Обнаружено, что в фотоокисленном состоянии хлорофилл a реакционного центра II фотосистемы имеет окислительно- восстановительный потенциал порядка +1000...+1300 мВ, т. е. настолько положительный, что может быть восстановлен за счет электронов воды. Необходимым компонентом системы разложения воды является марганец. Очевидно также, что путь электронов от воды до П680 включает больше, чем один этап. Таким образом, фотосистема II была достроена к фотосистеме I для того, чтобы стало возможным использование воды в качестве донора электронов. Побочный продукт этого процесса – молекулярный кислород. Фотосинтез, осуществляемый при функционировании двух фотосистем и сопровождающийся выделением O2 из воды, стал одним из основных типов энергетического метаболизма у высших форм жизни и занимает доминирующее положение в энергетической системе живого мира. Обнаруженные у фотосинтезирующих бактерий типы фотосинтеза различаются организацией аппарата, природой экзогенных доноров электрона и выделяемыми окисленными продуктами. Общим для всех типов фотосинтеза является способность превращать энергию света в доступные клетке формы энергии, которая потребляется затем во всех энергозависимых процессах, в том числе и для биосинтезов. Использование ее для ассимиляции CO2 – только один из вариантов обеспечения энергией конструктивного метаболизма у фототрофных эубактерий.
Дыхательные процессы
Дыхание – это энергодающий процесс, в ходе которого донорами электронов служат органические или неорганические соединения, а акцепторами – неорганические. Обычно конечным акцептором электронов служит молекулярный кислород (слайд 12.30). Однако при анаэробном дыхании в качестве конечного акцептора выступают сульфаты, нитраты и карбонаты (фумарат). Выход свободной энергии при полном окислении какого-либо органического соединения гораздо больше, чем при его сбраживании. У микроорганизмов, использующих в энергетических процессах кислород, превращения начинаются с тех же реакций, которые характерны для анаэробов. Но пируват не используется в качестве конечного акцептора водорода, а подвергается дальнейшему окислению с выделением значительного количества энергии (слайд 12.31). Пируват занимает центральное положение в промежуточном метаболизме. У большинства аэробов он подвергается действию ферментного комплекса пируват-дегидрогеназы, включающего три фермента, которые осуществляют: – декарбоксилирование, – дегидрирование с переносом водорода на НАД, – присоединение ацетильной группы и образование ацетил-КоА. Так происходит окислительное декарбоксилирование пирувата (8).
CH3-CO-COOH + КоA-SH + НАД+ → → CH3-CO~S-КоA + НАД-H2 + CO2 (8)
Дальнейшее превращение ацетил-КоА происходит в цикле лимонной кислоты или, по имени открывшего ученого, цикле Кребса.
Цикл трикарбоновых кислот
ЦТК имеет двоякое назначение. Основная функция его заключается в полном окислении вовлекаемого органического субстрата и отщеплении водорода. Другая функция цикла – снабжение клетки предшественниками для биосинтетических процессов. Исходным субстратом ЦТК служит ацетилКоА, образующийся при окислительном декарбоксилировании пирувата. В дальнейшем осуществляется серия последовательно протекающих реакций взаимопревращения ди- и трикарбоновых кислот (слайд 12.32). Врезультате одного оборота цикла происходят 2 декарбоксилирования, 4 дегидрирования и 1 фосфорилирование. Итогом 2 декарбоксилирований является выведение из цикла 2 атомов углерода, т. е. ровно столько, сколько его поступило в виде ацетильной группы. В результате 4 дегидрирований образуются 3 молекулы НАД-H2 и 1 молекула ФАД-H2. В результате фосфорилирования образуется 1 молекула АТФ. В процессе этих превращений весь водород оказывается на определенных переносчиках и задача теперь – передать его через другие переносчики на молекулярный кислород (слайд 12.33).
Неполное окисление
Уксуснокислые бактерии, выделенные в роды Gluconobacter и Acetobacter, могут получать энергию, осуществляя неполное окисление ряда органических соединений (этиловый спирт в уксусную кислоту) (слайд 12.34). Дальнейшая судьба полученных в результате неполного окисления продуктов различна. Некоторые уксуснокислые бактерии не способны к последующим превращениям образовавшихся соединений. Эти бактерии, объединенные в род Gluconobacter (единственный вид G. oxydans), глюкозу окисляют до глюконовой кислоты, этанол – только до ацетата, который дальше не может ими окисляться из-за отсутствия замкнутого ЦТК. Вторую группу составляют бактерии, способные к полному окислению органических субстратов до CO2 и H2O. Бактерии этой группы объединены в род Acetobacter, типичным представителем которого является A. peroxydans. Неполное окисление сахаров осуществляют и грибы с образованием большого разнообразия продуктов – молочной кислоты, фумаровой, янтарной, яблочной, муравьиной, уксусной, щавелевой, глюконовой. Например, Aspergillus niger превращает до 60 % глюкозы в лимонную кислоту, что используется в микробиологической промышленности (слайд 12.35). Органические кислоты, выделяемые грибами, образуются либо непосредственно в реакциях цикла Кребса, либо путем преобразования кислот этого цикла. При недостатке энергетического материала продукты неполного окисления используются этими же организмами как субстрат для дыхания и полностью окисляются до СО2 и Н2О.
Дыхательная цепь
Аэробы могут осуществлять более эффективную регенерацию АТФ. Они обладают особым аппаратом: дыхательной (электрон-транспортной) цепью и ферментом АТФ-синтазой (слайд 12.36). Обе системы у прокариотов находятся в плазматической мембране, у эукариотов – во внутренней мембране митохондрий. Компоненты дыхательной цепи погружены в двойной липидный слой. Отданные субстратами протоны и электроны переносятся на плазматическую мембрану или на внутреннюю мембрану митохондрий. Через мембрану они транспортируются таким образом, что между внутренней и внешней сторонами мембраны создается электрохимический градиент с положительным потенциалом снаружи и отрицательным внутри. Этот перепад заряда служит движущей силой для регенерации АТФ. В процессе синтеза АТФ протоны переходят обратно с наружной стороны мембраны на внутреннюю. Синтез АТФ за счет энергии транспорта электронов через мембрану называют окислительным фосфорилированием или фосфорилированием в дыхательной цепи (слайд 12.37). Электроны с восстановленных переносчиков поступают в дыхательную цепь, где проходят через ряд этапов, опускаясь постепенно на все более низкие энергетические уровни, и акцептируются соединением, служащим конечным акцептором электронов. НАД(Ф)-зависимые дегидрогеназы катализируют отрыв водорода от молекул субстратов и передают его на стартовый переносчик дыхательной цепи – НАД(Ф)-H2-дегидрогеназу. Акцептором водорода от НАД(Ф)-H2 являются флавиновые дегидрогеназы (ФАД). Водород с них поступает в дыхательную цепь на уровне хинонов (убихинон – Q). До кофермента Q осуществляется перенос атомов водорода. Далее, стоящий первым в цепи цитохром отрывает электрон от атома водорода и передает на систему цитохромов. Протоны в дальнейшем транспорте по дыхательной цепи не принимают участия и выделяются в среду. В митохондриях обнаружено пять цитохромов (b, c, c1, a, a3), различающихся между собой спектрами поглощения и окислительновосстановительными потенциалами. По цепочке цитохромов, набор которых специфичен для каждого вида микроорганизмов, электроны передаются на конечный цитохром (a+a3), называемый цитохромоксидазой. Последний передает электроны на молекулярный кислород с образованием ионов О2–. Выделенные в среду протоны водорода связываются с ионами О2– с образованием воды. Таким образом, в результате полного расщепления глюкозы в клетке аэробов выделяется в среду углекислый газ и вода. Содержащийся в конечных продуктах кислород имеет различное происхождение – в состав образующейся воды входит кислород воздуха, в состав углекислого газа – кислород окисляемого субстрата или кислород воды. Система переноса построена таким образом, что происходит постепенное выделение энергии, заключенной в электроне, в результате чего в трех местах выделяется энергия в количестве, достаточном для образования АТФ. Первое место образования АТФ находится между НАДН2 и ФАД+, второе – на уровне цитохрома с и третье – на конечном этапе дыхательной цепи. Таким образом, место включения электронов от разных субстратов в цепь их дальнейшего транспорта определяет число синтезируемых молекул АТФ (слайд 12.38). Таким образом, энергетический выход при окислении молекулы глюкозы приводит к образованию 38 молекул АТФ. Ингибиторы дыхательной цепи. Амитал и ротенон блокируют перенос электронов на участке до цитохрома b, действуя предположительно на НАД(Ф)-H2-дегидрогеназу. Антимицин А (антибиотик, продуцируемый Streptomyces) подавляет перенос электронов от цитохрома b к цитохрому c1. Цианид, окись углерода и азид блокируют конечный этап переноса электронов от цитохромов a+a3 на молекулярный кислород, ингибируя цитохромоксидазу.
Анаэробное дыхание
Бактерии, осуществляющие анаэробное дыхание, относятся к факультативным или облигатным анаэробам. Донорами электронов у них могут служить органические или неорганические соединения сульфаты, нитраты, карбонаты, фумарат. В результате образуются соответствующие восстановленные продукты: сероводород, нитрит, азот, ацетат, сукцинат (слайд 12.39). Описаны анаэробные бактерии, способные окислять органические соединения, используя в качестве конечного акцептора электронов Fe3+ или Mn4+. Диссимиляционная нитратредукция (нитратредуктаза). Происходят в анаэробных условиях и в присутствии субстратов. Осуществляется бактериями родов Pseudomonas, Bacillus, Paracoccus, Thiobacillus. Нитратное дыхание отличается от нитрификации тем, что в этом процессе функционирует только первая стадия: образование нитрита, который может накапливаться в культуральной жидкости. Осуществляется бактериями кишечной группы (Enterobacter, Escherichia) и др. Диссимиляционная сульфатредукция (сульфатредуктаза). Осуществляется сульфатредуцирующими бактериями (Desulfotomaculum, Desulfovibrio и др.). В природе они встречаются в сероводородном иле. Карбонатное дыхание. Осуществляют ацетогенные бактерии (Clostridium aceticum, Acetobacterium woodii). Автотрофы, способны к росту в присутствии водорода (окисляют) и углекислого газа. Фумаратное дыхание широко распространено у гетеротрофов. Обнаружено у энтеробактерий, Vibrio, Bacteroides и пропионовых бактерий. У микроорганизмов существует большое разнообразие в составе дыхательной цепи: – могут отсутствовать некоторые цитохромы; – цепь может быть разветвленной или укороченной; – донорами электронов могут служить органические и неорганические соединения. – конечными акцепторами электронов могут быть органические или неорганические соединения (анаэробное дыхание); – в анаэробных дыхательных цепях цитохромоксидазы заменены соответствующими редуктазами. Итак, дыхательные цепи бактерий существенно отличаются от аналогичной системы, функционирующей в эукариотных клетках. Они менее стабильны по составу и значительно менее эффективны энергетически (слайд 12.40).
|
Последнее изменение этой страницы: 2019-05-18; Просмотров: 97; Нарушение авторского права страницы