Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Закономерности развития математики
Вопрос о закономерностях развития математики тесно связан с вопросом о природе математического знания. Ответ же на последний вопрос объективно труден. Дело в том, что математика — наука многоуровневая. Одному ее уровню (его иногда называют практической математикой) принадлежат вычислительные процедуры, предметом которых являются количественные характеристики вешей, вовлеченных в общественную практику. Возникая из практики, практическая математика именно в ней находит свое применение и в конечном итоге — оправдание своего существования. Другому, теоретическому, уровню при- 1 Впервые эта концепция была предложена А.Н Колмогоровым в статье «Математи 2 Подробнее см.: Бычков С.Н. Египетская геометрия и греческая наука // Историко- 1.3. Закономерности развития математики 35 надлежит математические методы, целью которых является решение задач, прямо не связанных с практикой, но возникающих в сфере самой математики1. На теоретическом уровне также целесообразно выделить два подуровня: теоретическая математика, не связанная с аксиоматизацией, и теоретическая математика, опирающаяся на аксиоматике -дедуктивный метод. В последнем случае мы имеем дело с дисциплиной, объекты которой носят идеальный характер. Различие между уровнями или ветвями математики необходимо влечет и различие в используемых методах. В практической математике во главу угла ставится эффективность количественных методов при решении тех или иных конкретных специальных задач. При этом ценность того или иного метода подсчета совершенно не зависит от степени его общности (пусть метод эффективно работает в данной конкретной ситуации, в другой можно придумать иной метод), а чисто математическая строгость зачастую приносится в жертву, особенно в тех случаях, когда путем нестрогих рассуждений быстро получается практически значимый результат. В теоретической математике, напротив, стремятся обеспечить наивысшую степень общности развиваемых методов и соблюсти максимальную логическую строгость рассуждений, используя для этой цели аксиоматический метод. Поскольку целевые установки практической и теоретической математики различны, вопрос о закономерностях развития математики как целого (включающего оба уровня) может быть решен только после ответа на принципиальный вопрос о том, как эти уровни соотносятся между собой. Последний же вопрос не может быть решен чисто умозрительным путем, без учета специфики того или иного конкретно-исторического этапа развития математики. Прежде всего отметим, что практическая и теоретическая математика различны по происхождению. Практическая математика, обслуживающая хозяйственные операции, в той или иной форме возникает во всех древних цивилизациях (древневавилонской, египетской, китайской, индийской и др.), причем на весьма ранних ступенях их развития. Так, первые известные нам шумерские тексты экономико-математического содержания относятся к третьему тысячелетию до н.э. Что же касается теоретической математики, то ее доаксиоматическая ветвь возникает в целом ряде древних цивилизаций (например, древневавилонской или китайской) и связана с фактором социального характера — становлением специального математического образования («математика школы»), К этой ветви относятся, например, методы решения квадратных уравне- Отметим, что древние греки называли указанные уровни математики по-разному. Математикой они называли лишь теоретическую ее ветвь, а практическую звали логистикой (искусством вычислений). 36 1. Философские проблемы математики ний, изучавшиеся в древневавилонских писцовых школах. Сами эти методы не имели практического применения, но служили средством проверки правильности вычислений при обучении. Что же касается аксиоматической ветви теоретической математики, то ее возникновение — явление уникальное, поскольку своим рождением она обязана особой культурно-исторической ситуации, сложившейся в V в. до н.э. в Древней Греции. Сказанное выше приводит нас к необходимости выделения нескольких исторических периодов в развитии математики, для каждого из которых характерны разные формы взаимоотношения ветвей математики, а значит, и свои закономерности развития. Содержание первого периода — до появления математики теоретической — состоит преимущественно в разработке вычислительных процедур, относящихся к практической математике. В этот период развитие математики определяется влиянием внешних, в первую очередь экономических, факторов и говорить о его закономерностях можно лишь в связи с общими закономерностями социально-экономических изменений, специфических для той или иной цивилизации. С появлением доаксиоматических форм теоретической математики начинается второй период, для которого характерно тесное взаимодействие практически ориентированных вычислительных методов с развитием в рамках системы образования теоретических методов решения собственно математических проблем. Третий период в развитии математики связан с появлением на исторической сцене аксиоматической ветви теоретической математики, которой впоследствии было суждено существенно изменить взаимоотношения между практической и теоретической математикой1. Этот период можно также разбить на два этапа. Первый, продолжавшийся в Европе примерно до середины XVII в., характеризуется относительно независимым развитием двух ветвей математики — практической и теоретической. Несмотря на начавшиеся еще в эллинистическую эпоху процессы контаминации и диффузии, как теоретическая, так и практическая математика (за исключением разве что арабской цивилизации) в целом оставалась самостоятельной дисциплиной, причем каждая из них развивалась по своим собственным законам. Практическая математика, как это свойственно ей, «отслеживала» особенности социально-экономического развития, достигая своих вершин в условиях, когда без нее невозможно было обойтись (как, например, в итальянских городах-государствах XV в. вследствие бурного развития торговли и банковского дела). Параллельно с ней, следуя потребностям школьного образования, развивалась 1 В Древней Греции этот период продолжался до IV в. до н.э. В других культурах — китайской, индийской и др. — до XVII—XIX вв., когда восточная математика была «поглощена» математикой европейской. 1.3. Закономерности развития математики 37 неаксиоматическая ветвь теоретической математики. Что же касается аксиоматической ветви, то она с самого своего рождения (или даже чуть раньше, уже в пифагорейской школе) пристально внимала философско-религиозным императивам современной ей эпохи и в соответствии с ними развивала свои скрытые потенции. Отметим, что в рассматриваемую эпоху обособление одной из ветвей математики от другой отражалось и на математическом образовании. Практической математике обычно обучали в рамках того ремесла, в котором эта математика применялась (землемерие, строительство, банковское дело и т.д.), теоретической — в элитных учебных заведениях (Академии Платона, Лицее Аристотеля, средневековых университетах). Второй этап взаимоотношений между практической и теоретической математикой оформляется в XVII в., когда в рамках теоретической математики появляются модели, служащие для количественного описания физического мира, а затем, с XIX в., и технических устройств. Начиная с этого времени наблюдается устойчивая тенденция вытеснения практической математики (как самостоятельной дисциплины) и ее превращения в так называемую прикладную математику, т.е. раздел чистой математики, из которого черпаются модели для различных ее приложений1. Указанная тенденция приводит к тому, что развитие математики в этот период (продолжающийся и по сей день) сводится, по сути, к прогрессу математики теоретической. При этом сама «чистая» математика все более и более ориентируется на аксиоматико-дедуктивный метод. Последнее обстоятельство находит свое теоретическое (философское) выражение и обоснование в рамках различных форм априоризма, в конечном итоге восходящих к точке зрения на математику И. Канта. Согласно Канту, математика — точнее, один из ее разделов, составляющий своеобразное ядро этой науки, — обладает безусловной (аподиктической) достоверностью, т.е. в принципе не может подвергаться трансформациям, затрагивающим ее сущность. Отсюда с необходимостью следует, что развитие математики (или ее аподиктического ядра) не может носить революционного характера (как это свойственно физике), но сводится исключительно к накоплению результатов (кумулятивный рост) за счет внутренних причин. Две тенденции наличествуют в таком развитии математики: она приобретает все более общий характер (см. «Математика едина. Это положение означает, что деление математики на чистую и прикладную не может быть строго проведено, что чистая и прикладная математика являются частями единого целого, называемого математикой, что эти части невозможно отделить одну от другой» {Л.Д. Кудрявцев. Современная математика и ее преподавание. М., 1980. С. 74). Далее автор пишет об общей сущности чистой и прикладной математики, «заключающейся в изучении математических структур, в общности методов, применяемых Для изучения этих структур, о невозможности изучать прикладные математические науки без знания понятий чистой математики...» (Там же. С. 15). 38 1. Философские проблемы математики выделение трех базисных математических структур у Н. Бурбаки1) и одновременно разрастается вширь. Причем создание все более общих, абстрактных структур идет параллельно с поиском их (сугубо математических) интерпретаций (т.е. экстенсивным расширением математики). Оправданием для введения все более абстрактных идеализации становится возможность их истолкования в терминах идеализации более низкого уровня. Ряд признаков свидетельствует, однако, о том, что указанный период в развитии математики, по-видимому, исчерпал свои внутренние потенции и что мы находимся в преддверии нового этапа, контуры которого можно очертить пока лишь весьма приблизительно. Дело в том, что идея редукции всей математики к ее чисто теоретической компоненте, а последней — к аксиоматико-дедуктивной форме, объективно ведет к увеличению разрыва между математикой и насущными потребностями экономического развития, с одной стороны, и математикой и образованием — с другой. Не имея возможности подробного обсуждения этой проблемы в рамках данной работы, укажем лишь на некоторые характерные явления, свидетельствующие о неблагополучном положении в развитии математики (если взглянуть на нее не изнутри, глазами активно работающего математика, а «снаружи» — с точки зрения общества). Первый факт относится к взаимоотношению математики и техники (под техникой мы будем понимать технологии вообще, в какой бы области они ни использовались). Еще в середине прошлого века, обсуждая этот вопрос, А.Н. Колмогоров писал: «Прямые... связи математики с техникой чаще (курсив мой. — Е.З.) имеют характер применения уже созданных математических теорий к техническим проблемам», подразумевая при этом, что «примеры возникновения новых математических теорий на основе непосредственных запросов техники» редки2. Если 50 лет назад такое положение вещей еще не воспринималось как проблема (техника не развивалась столь стремительно и запас готовых математических моделей был достаточен для ее обслуживания), то в настоящее время ситуация изменилась. Стремительная смена технологий приводит к необходимости создания буквально «на ходу» новых адекватных методов анализа количественных параметров. Наработанные за последние три столетия классические математические модели, созданные внутри самой математики, не всегда справляются с функцией математического обеспечения новых технологических процессов. В качестве примера можно привести современную теорию антикризисного управления, в которой ощущается острый недостаток адекватных математических ме- 1 Бурбаки Н. Очерки по истории математики. М., 1963. С. 245—259, 252—253. 2 Колмогоров А.Н. Математика (статья лля БСЭ-2) // Колмогоров А.Н. Математика в ее 1.3. Закономерности развития математики 39 тодов. Классические математические методы теории управления, развитые в XX в., в данной области чаще всего не удается применить. Другая проблема, напрямую связанная с односторонним развитием математики как теоретической науки, возникает в сфере математического образования. Эта проблема не представляется особенно острой, когда речь идет о преподавании математики школьникам физико-математических школ и классов или о преподавании студентам-математикам. В этом случае учащийся просто обязан изучить лучшие образцы теоретической математической мысли с тем, чтобы, следуя этим образцам, быть в состоянии внести свой вклад в развитие данной дисциплины. Дело обстоит иначе, когда речь заходит о преподавании элементарной и высшей математики учащимся, для которых математика — в лучшем случае вспомогательный аппарат в основной профессии. Такие учащиеся с трудом воспринимают и осваивают математические формализмы. Причина состоит в том, что эти формализмы в связи с вышеуказанной тенденцией к поиску все более общих, простейших структур приобрели (особенно в настоящее время) столь абстрактный характер, что потеряли всякую связь с теми конкретными задачами, которые когда-то привели к их созданию. Именно эту категорию учащихся, составляющих подавляющее большинство обучающихся математике в школе и в вузах, имеет в виду В.И. Арнольд, когда пересказывает историю, случившуюся с Ж.Ж. Руссо. Последний писал в своей «Исповеди», что долго не мог поверить в доказанную им самим формулу квадрата суммы, пока наконец не разрезал квадрат на два квадрата и два равных прямоугольника. Мораль этого примера проста. Единственный способ сделать осмысленным освоение математических формализмов (включая формализм арифметики) состоит в показе их предметных интерпретаций. Идея эта не нова. Еще на заре XX в. А. Пуанкаре предлагал обучать учащихся действиям с простыми дробями путем разрезания (хотя бы мысленно) либо круглого пирога, либо яблока. Такой метод преподавания позволяет избежать нелепых выводов, которые сплошь и рядом делают современные школьники, считая, например, что '/2+1/з=2/5- Подобного рода педагогические идеи идут в разрез с тем стилем математического образования, который, следуя Бурбаки, ставит во главу угла обучение учащихся аксиоматике, на основе которой строятся эффективные, но малопонятные для них математические формализмы. С точки зрения Бурбаки, математика представляет собой иерархию структур на множествах, начиная с простейших (например, структура группы), и заканчивается сложными, состоящими из нескольких порождающих структур. В число последних попадает, в частности, классический анализ. Следуя этой логике, начинать обучение математике надо с простейших формализмов, а заканчивать — теориями уровня математического анализа. 40 1. Философские проблемы математики Такой подход к обучению игнорирует тот факт, что в реальной истории развития математики все обстояло с точностью до наоборот. Сначала (в значительной степени под влиянием механики, т.е. материальной предметности) появились нестрогие методы дифференциального и интегрального исчисления, и лишь затем были развиты удовлетворяющие современным критериям строгости соответствующие структуры и формализмы. Но это еще не все. В работах последних лет, написанных в рамках социокультурной философии математики, показано, что изложение математики в соответствии со строгим аксиоматическим подходом органично связано только с одним ее разделом — теоретической геометрией. Был также раскрыт механизм возникновения самого дедуктивного метода. А именно было показано, что греческая математика превратилась из науки о количественных отношениях реальных предметов в науку об идеальных объектах по существу благодаря случаю (невозможности использования египетских строительных приемов в прикладных целях)1. И последнее. Восходящая к Канту идея о том, что математика имеет абсолютно достоверное ядро, в последнее время подвергается критике как со стороны философов (К. Поппер, И. Лакатос, Ф. Китчер, А.Г. Ба-рабашев2), так и логиков и историков науки. В качестве примера последнего рода укажем на критику диагональной процедуры Г. Кантора, лежащую в основе многих разделов современной математики и до последнего времени считавшуюся логически корректной3. Указанные выше обстоятельства — стремительная смена технологий, кризис математического образования и критика идеи кумулятивного развития математики — можно рассматривать как признаки того, что математику в недалеком будущем ожидает переход в новое качество. Поскольку развитие культуры, в том числе культуры математической, совершается в результате сознательных действий людей (а не в процессе естественной эволюции, как это происходит в природе), то не только теоретической, но и чисто практической проблемой становится обоснование стратегий роста математики, исходя из анализа ее исторического развития в целом и особенностей наблюдаемых сейчас кризисных явлений. 1 См.: Бычков С.Н. Указ. соч. С. 277—284. Бурбакизм же, не видя социокультурной обусловленности аксиоматического метода, возводит его в ранг непререкаемой догмы, что и приводит к тяжелым последствиям для школьного и вузовского математического образования. ^ См.: Барабашев А.Г. Будущее математики. Методологические аспекты прогнозирования. М., 1991. 3 См.: Бычков С.Н., Зайцев Е.А., Шашкин Л.О. Канторовская диагональная процедура: исторический и логический контекст // Историко-математические исследования. Вторая серия. Вып. 4 (39). М., 1999. С. 303-325. 1.4. Философские концепции математики 41 1.4. Философские концепции математики Философские концепции математики различаются тем, как они трактуют природу математических понятий и принципов, логику их происхождения и их связь с представлениями опытных наук. Вопрос о происхождении математических понятий является наиболее важным, поскольку он определяет представления о природе и методе математического мышления. Этот вопрос является и самым трудным в том смысле, что его решение тесно связано с глубокими и еще не вполне понятыми антитезами общей теории познания и прежде всего с традиционным противостоянием эмпиризма и рационализма в понимании норм мышления. Мы проведем здесь краткое описание основных воззрений на математику, имевших место в истории философии и методологии математики. Первой ясно выраженной философией математики был пифагореизм. Пифагорейцы отделяли мир чувственных предметов и явлений, в которых царит случайность, от космоса как идеальной основы мира, которая может быть понята только умозрительно, посредством самого разума. Все, высказываемое о чувственном мире, недостоверно, является только мнением, и лишь утверждения математики, относящиеся к космосу, выступают подлинным знанием, обладающим истинностью и неопровержимостью. Пифагорейцы, таким образом, отделяли математику от других наук по предмету, а также и по методу: математические утверждения опираются не на показания чувств, а на умозрение, т.е. на разум, который способен, как они полагали, непосредственно (без опоры на чувственный опыт) отражать глубинные законы мироздания. Математика определяла и общее пифагорейское понимание реальности, которое выражалось в положении «Все есть число». Это положение выражало веру пифагорейцев в то, что всякая вещь содержит некоторую присущую ей меру, определенное гармоническое соединение частей, благодаря которому она и существует. Они были убеждены также в том, что вещь может быть познана в своей сущности только через раскрытие ее числа, ее внутренней пропорциональности. В соответствии с такой установкой они пытались соединить наиболее значимые для них вещи с числами, которые раскрывали бы их природу. Известно, что богатство и благо они соотносили с числом пять, согласие и дружбу — с числом четыре, вселенную — с числом десять и т.д. Положение «Все есть число» имело у пифагорейцев и другой, менее понятный для нас смысл. Как это видно из сочинений Аристотеля, они понимали число не только в качестве внутренней структуры вещей, но и в качестве их причины, т.е. они мыслили числа как некоторого рода идеальную основу мира, как особого рода субстанцию, определяющую само их возникновение. Можно сказать, что Пифагор и его последователи возводили числа в начало всех 42 1. Философские проблемы математики вещей, ставили их на место природных стихий, из которых исходили первые греческие философы. Пифагорейский взгляд на математику был господствующим в античной философии. Мы видим это в диалогах Платона, в особенности, в «Теэтете» и «Тимее». Платоновский Бог-демиург строит мир, опираясь на идею пропорционального соотношения всех его частей. «...Бог поместил между огнем и землей воду и воздух, после чего установил между ними возможно более точные соотношения, дабы воздух относился к воде, как огонь к воздуху и вода относилась к земле, как воздух к воде. Так он сопряг их, построяя из них небо, видимое и осязаемое. На таких основаниях и из таких составных частей числом четыре родилось тело космоса, упорядоченное благодаря пропорции, и благодаря этому в нем возникла дружба, так что разрушить его самотождественность не может никто, кроме лишь того, кто сам ее сплотил»1. Мы видим далее у Платона, что каждое из природных начал соединяется с одним из пяти правильных многогранников: огонь — с тетраэдром, земля — с гексаэдром, вода — с октаэдром, воздух — с икосаэдром. Космос как высшее совершенство имеет форму сферы2. Здесь мы наблюдаем первые, еще очень наивные попытки использовать математические объекты для описания реальности, для выражения ее сущностных связей. Первый удар по пифагорейской философии математики был нанесен развитием самой математики, а именно открытием несоизмеримых геометрических величин. Факт существования несоизмеримых величин подрывал гармонию между арифметикой и геометрией, которая для пифагорейцев была само собой разумеющейся, а также пифагорейскую идеологию в целом. Необходимо было признать в силу самой строгой логики, что при любом выборе единицы измерения найдутся величины неизмеримые и непредставимые отношением натуральных чисел, которые, таким образом, уже не могут быть поняты как соответствующие определенному числу. Но если число является недостаточным уже для описания геометрических величин, то его универсальность для выражения других, более сложных вещей становится в высшей степени сомнительной. Другая причина постепенного ослабления пифагорейской философии математики состояла в развитии философии, в появлении более обоснованного и убедительного объяснения природы математических объектов. Огромная роль принадлежит здесь Аристотелю, в сочинениях которого дана широкая и в определенном смысле исчерпывающая критика пифагореизма. Хотя Аристотель — непосредственный ученик Платона, его мировоззрение отличается от платоновского радикальным образом. Аристотель скорее исследователь природы, чем умозрительный 1 Платон. Тимей // Соч.: В 4 т. М., 1994. Т. 3. С. 435. 2 Там же. С. 458-462. 1.4. Философские концепции математики 43 философ, он ценит факты и логику больше, чем мифологические построения. Отношение Аристотеля к пифагорейцам отрицательное и даже пренебрежительное. Пифагорейская философия ложна прежде всего потому, что она не раскрывает причин вещей. «На каком основании, — спрашивает Аристотель, — числа суть причины? Есть семь гласных, гармонию дают семь звуков, семи лет животные меняют зубы, было семь вождей против Фив. Так разве потому, что число таково по природе, вождей оказалось семь или Плеяды состоят из семи звезд? А может быть, вождей было семь потому, что было семь ворот...»1 Пифагорейские сопоставления для Аристотеля — простая игра с числами, основанная на случайных совпадениях и не имеющая значения для истинного объяснения явлений. В философии Аристотеля появилось новое понимание математического мышления, которое известно сегодня под названием математического эмпиризма. В основе этой концепции лежит убеждение в первичности опытного знания. По мнению Аристотеля, математические предметы не являются чем-то существующим отдельно от вещей: они связаны с вещами и возникают как таковые из способности отвлечения. «И лучше всего можно каждую вещь рассмотреть таким образом: полагая отдельно то, что отдельно не существует, как это делает исследователь чисел и геометр»2. Смысл этого высказывания состоит в том, что человек, воспринимая вещи во всем многообразии свойств, отвлекается от них, оставляя лишь некоторые из них и исследуя их как отдельно (самостоятельно) существующие. Математика, по Аристотелю, является наиболее абстрактной наукой: если физик отвлекается от всех качеств тел, кроме их движения, то математик отвлекается и от движения, оставляя в сфере своего внимания только фигуры и числа. Математик строит особый идеальный мир, основанный на отвлечениях. Этот мир не является независимым от чувственных вещей, он берется как независимый лишь условно, для ясности и простоты рассмотрения интересующих нас свойств. Вещи первичны перед математикой и определяют ее содержание. Аристотель высказал также ряд других идей, заслуживающих рассмотрения. Он выдвинул положение о том, что строгость математического рассуждения объясняется простотой ее предмета. Под простотой здесь имеется в виду не легкость усвоения математики, а специфическая абстрактность ее предмета, отсутствие разнородности качеств, которые присутствуют в физике и других, более конкретных науках. Им высказана также идея о глубинной связи математики с понятием прекрасного. Важнейшие виды прекрасного, считал Аристотель, — это слаженность, соразмерность и определенность, но именно эти стороны вещей и выявляет математика. 1 Аристотель. Метафизика // Соч.: В 4 т. М., 1972. Т. 1. С. 365. 2 Там же. С. 326. 44 1. Философские проблемы математики Аристотелевская концепция математики является, конечно, более обоснованной и более соответствующей логике научного мышления. Значительное число ученых и в настоящее время придерживаются в своей сути аристотелевского воззрения на математику: они считают, что математика вторична перед физикой, что исходные математические объекты есть лишь абстрактные схемы реального бытия вещей. С этой точки зрения математика — абстрактная физика, отвлеченная от анализа сил и движений, одна из наук о природе, и именно по этой причине она с успехом прилагается к описанию природы. Эмпирическое воззрение на математику встретилось, однако, с большими трудностями. Уже давно было замечено, что математические утверждения (теоремы) не подвергаются опровержению. Доказанное в математике — доказано навсегда, в то время как в физике нет ни одного утверждения, которое не стояло бы перед опасностью пересмотра и корректировки. Мы замечаем также, что математика в обосновании своих положений не использует никаких показаний опыта. Исследуя пространство, геометрия не обращается к опытному анализу пространственных отношений. Наконец, многие объекты, исследуемые в математике, в принципе не могут быть поняты в качестве абстракций из опыта. Затруднения возникают уже с отрицательными числами. Нельзя доказать положение: (+5) (—5) = +25, апеллируя к какому-либо опыту или к способности абстрагирования. Еще более проблематичны в этом отношении иррациональные и комплексные числа. Развитие математического анализа ввело в математику понятие бесконечности, которое не имеет коррелята в чувственном опыте. Развитие математики в Новое время выдвигало все новые и новые контрдоводы об отношении аристотелевской концепции математики и все настоятельнее ставило задачу ее понимания на некоторой принципиально новой основе. Концепция математики, которая в какой-то степени решает эту задачу, сформировалась в XVII—XVIII вв. и получила наименование априоризма. Априоризм в определенной степени является возвращением к пифагорейскому делению знания на чувственное и умопостигаемое, ибо математика объявляется принципиально внечувственным знанием, основанным на специфической интеллектуальной или чистой чувственной интуиции. Декарт разделил все истины на вечные, данные в аподиктической очевидности, и чувственные, постигаемые на основе опыта. Математика снова стала пониматься как знание, радикально отличное от эмпирического знания, полученное на основе внечувственной очевидности. Близкое воззрение было сформулировано Г. Лейбницем. Он отличал необходимые истины (математические и логические) от истин случайных, основанных на опыте. По мнению Лейбница, необходимые истины являются аналитическими, т.е. строго выводимыми из некоторой системы простых тавтологических утверждений. И у Декарта, и у 1.4. Философские концепции математики 45 Лейбница возникновение исходных понятий математики не связывается с опытом; эти истины рассматриваются как истины самого разума, покоящиеся на очевидности, имеющей внеопытную природу. Учение об априорности математики получило дальнейшее развитие в философии И. Канта. Кант отказался от воззрения Лейбница на аналитичность необходимых истин. Аналитичностью, с его точки зрения, обладает только логика, остальные же виды априорных истин являются синтетическими. Синтетичность математики обусловлена наличием в нашем сознании чистой чувственности, чувственного, но неэмпирического созерцания, которое позволяет сформулировать положения априорные (независимые от опыта) и одновременно синтетические, не сводимые к тавтологиям типа А = А. Исходные положения геометрии опираются, согласно Канту, на чистое представление о пространстве, а истины арифметики — на чистое представление о времени. Чистые представления пространства и времени определяют, по Канту, как состав исходных принципов (аксиом) математики, так и логику математического мышления. Любое математическое доказательство самоочевидно в том смысле, что каждый его шаг может совершаться только на основе очевидного синтеза1. К важнейшим положениям кантовской философии математики нужно отнести также его положение о конструктивном характере математических объектов. Математика, по мнению Канта, содержит два типа объектов: объекты, непосредственно данные в чистом созерцании, и объекты, данные только своим правилом конструирования. Мы не можем созерцать тысячеугольник, говорит Кант, но мы имеем самоочевидную схему построения этой фигуры, и данное обстоятельство позволяет нам высказывать о ней истинные суждения, несмотря на отсутствие непосредственного зрительного образа этой фигуры. Признание неевклидовых геометрий в XIX в. существенно поколебало истинность кантовского априоризма. Эти геометрии показывали возможность существования математических теорий, не обладающих априорной и самоочевидной основой. Аксиоматика геометрии Лобачевского и других неевклидовых геометрий не является очевидной, она обладает лишь логической определенностью. Анализ математических понятий показывал также, что многие из них не обладают и конструктивностью в кантовском смысле. Это свидетельствовало о том, что априористское воззрение на математику ограниченно и не определяет ее истинного предмета и метода. В конце XIX в. в связи с осмыслением статуса неевклидовых геометрий и теории множеств стала оформляться новая концепция математики, получившая название формалистской философии математики. Основные ее установки могут быть выражены в виде следующих положений: 1 См.: Кант И. Соч.: В 6 т. М., 1963-1966. Т. 3. С. 402. 46 1. Философские проблемы математики • математика не является наукой, исследующей аспекты реальности, она представляет собой лишь метод логической трансляции опытного знания и состоит из совокупности структур, пригодных для этой цели; • основным требованием к аксиомам математической теории является не их очевидность и не их связь с опытом, а их непротиворечивость, которая необходима и достаточна для ее приложения к опытным наукам; • к математике неприменимо понятие истинности в смысле опытного подтверждения. Математическая теория сама по себе не истинна и не ложна. Она становится таковой только после соединения ее понятий с понятиями опытных наук; • если обоснование содержательной науки состоит в установлении ее истинности, то обоснование математической теории заключается только в доказательстве логической непротиворечивости ее аксиом. Эти принципы оформились в конце XIX — начале XX в. в работах Г. Кантора, А. Пуанкаре и Д. Гильберта1. Ясно, что, принимая этот взгляд на сущность математической теории, мы уходим от трудностей эмпирической и априористской философии математики. От математической теории не требуется больше ни наглядности, ни рациональной очевидности принципов, не требуется опытного происхождения и конструктивности понятий. Для математической теории объявляется существенным только одно требование, а именно требование ее непротиворечивости. Проблема обоснования математической теории понимается с этой точки зрения как строгое доказательство ее непротиворечивости. Философия математики XX в. развивалась в основном в русле этих принципиально новых идей, которые, безусловно, представляют собой более высокий этап в понимании природы математического мышления. Определенная трудность этой концепции состоит в том, что она рассматривает все математические теории как онтологически равноценные и не выделяет традиционных теорий как обладающих особым онтологическим статусом. На протяжении XX в. появились новые воззрения на природу математики. Мы видим прежде всего некоторое возрождение эмпиризма. В этом плане получила известность концепция Ж. Пиаже, который в 50-х гг. прошлого века сформулировал операциональный подход к пониманию природы исходных математических понятий. По мнению Пиаже, необходимо различать два вида опыта: физический и логико-математический. Когда ребенок рассматривает камешки и сравнивает их по цвету, он находится в сфере физического опыта и физических абстракций, когда же он начинает считать эти камешки, то он отвлекается от всех их физических качеств и обращает внимание только на операции, необходимые 1 См.: Кантор Г. Основы общего учения о многообразиях // Труды по теории множеств. М., 1985. С. 79—81; Гильберт Д. О бесконечном // Избр. труды. М., 1999. 1.4. Философские концепции математики 47 |
Последнее изменение этой страницы: 2019-05-18; Просмотров: 661; Нарушение авторского права страницы