![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Электрический заряд. Закон Кулона. Электростатическое поле (ЭСП). Напряженность ЭСП. Принцип суперпозиции. Силовые линии ЭСП.⇐ ПредыдущаяСтр 12 из 12
Объяснение электризации было осуществлено в 1881 году Гельмгольцем, который выдвинул гипотезу о существовании электрически заряженных элементарных частиц. Впоследствии эта гипотеза подтвердилась открытием в 1897 году Томсоном электрона. Электрон имеет электрический заряд равный В изолированной системе алгебраическая сумма электрических зарядов остается постоянной. Это утверждение носит название закона сохранения заряда. Наличие у тела электрического заряда проявляется в том, что такое тело взаимодействует с другими заряженными телами. Тела, несущие заряды одинакового знака, отталкиваются друг от друга. Тела, заряженные разноименно, притягиваются друг к другу. Закон, которому подчиняются силы взаимодействия так называемых точечных зарядов, был установлен в 1775 году Кулоном, согласно которому сила взаимодействия двух неподвижных точечных зарядов прямопропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния r между ними
где В случае одноименных зарядов сила оказывается положительной, (что соответствует отталкиванию между зарядами). В случае разноименных зарядов сила отрицательна, что соответствует притягиванию зарядов. Совокупность двух равных по величине разноименных точечных зарядов q, расположенных на некотором расстоянии Произведение Взаимодействие между зарядами осуществляется через электрическое поле. Электрическое поле покоящихся зарядов называется электростатическим. Электростатическое поле отдельного заряда можно обнаружить, если внести в это поле другой заряд, на который в соответствии с законом Кулона будет действовать определенная сила. Внесем в электрическое поле, созданное зарядом q, точечный положительный заряд, называемый пробным Если в одну и туже точку помещать разные пробные заряды
т.е. напряженность данной точки электрического поля это сила действующая на единичный положительный заряд, помещенный в эту точку. Учитывая закон Кулона (13.1) нетрудно получить выражение для напряженности поля создаваемого точечным зарядом q или в векторной форме
За единицу напряженности принимается напряженность в такой точке поля, в которой на единицу заряда действует единица силы. Электрическое поле наглядно изображается с помощью силовых линий. Силовой линией электрического поля называется линия, в каждой точке которой касательная совпадает с вектором напряженности поля. Силовые линии проводятся с такой густотой, чтобы число линий, пронизывающих воображаемую площадку 1м2, перпендикулярную полю, равнялось величине напряженности поля в данном месте. Тогда по изображению электрического поля можно судить не только о направлении, но и о величине напряженности поля. Электрическое поле называется однородным, если во всех его точках напряженность Е одинакова. В противном случае поле называется неоднородным. При положительном заряде, образующем поле, вектор напряженности направлен вдоль радиуса от заряда, при отрицательном - вдоль радиуса по направлению к заряду. Исходя из положительного заряда (или входя в отрицательный заряд) силовые линии теоретически простираются до бесконечности. Если поле образовано не одним зарядом, а несколькими, то силы, действующие на пробный заряд, складываются по правилу сложения векторов. Поэтому и напряженность системы зарядов в данной точке, поля равна векторной сумме напряженностей полей от каждого заряда в отдельности.
Согласно принципу суперпозиции электрических полей можно найти напряженность в любой точке А поля двух точечных зарядов
50.Работа по перемещению заряда в ЭСП. Потенциальная энергия и заряд ЭСП. Принцип суперпозиции. Теорема о циркуляции для ЭСП. Работу по перемещению заряда в электростатическом поле удобно представить в виде Отношение величины потенциальной энергии пробного заряда в рассматриваемой точке электростатического поля к величине этого заряда называется потенциалом электростатического поля и является энергетической характеристикой электрического поля
51. Поток вектора напряженности ЭСП. Теорема Гаусса. Применение теоремы Гаусса к расчету ЭСП. Бесконечной равномерно заряженной плоскости. Поверхностная плотность заряда искомая напряженность электрического поля равномерно заряженной плоскости 52. Поток вектора напряженности ЭСП. Теорема Гаусса. Применение теоремы Гаусса к расчету ЭСП. Бесконечной равномернозаряженной нити. Поле равномерно заряженной нити (цилиндра).
53.Эквипотенциальные поверхности. Связь напряженности и потенциала. ЭКВИПОТЕНЦИА́ ЛЬНАЯ ПОВЕ́ РХНОСТЬ, поверхность, во всех точках которой потенциал электрического поля имеет одинаковое значение j= const. На плоскости эти поверхности представляют собой эквипотенциальные линии поля. Используются для графического изображения распределения потенциала. Эквипотенциальные поверхности замкнуты и не пересекаются. Изображение эквипотенциальных поверхностей осуществляют таким образом, чтобы разности потенциалов между соседними эквипотенциальными поверхностями были одинаковы. В этом случае в тех участках, где линии эквипотенциальных поверхностей расположены гуще, больше напряженность поля. Эквипотенциальными поверхностями поля точечного электрического заряда являются сферы, в центре которых расположен заряд. Эквипотенциальные поверхности однородного электрического поля представляют собой плоскости, перпендикулярные линиям напряженности. Поверхность проводника в электростатическом поле является эквипотенциальной поверхностью.Электрическое поле характеризуется двумя физическими величинами: напряженностью (силовая характеристика) и потенциалом (энергетическая характеристика). Выясним как они связаны между собой. Пусть положительный заряд q перемещается силой электрического поля с эквипотенциальной поверхности, имеющей потенциал фи0, на близко расположенную эквипотенциальную поверхность, имеющую потенциал 54. Диэлектрики. Связанные и сторонние заряды. Полярные и неполярные молекулы. Поляризация диэлектрика. Вектор поляризованности. Диэлектрические проницаемость и восприимчивость. Диэлектрики, вещества, плохо проводящие электрический ток. Состоит из молекул(атомов).3типа диэлектриков: неполярные-диэл. с неполярными молекулам(H2, O2).Полярные диэл они с полярными молекулами(вода, спирт). Ионные диэл имеют ионную кристаллическую решётку. Связанные заряды-нескампенсированные заряды, которые появились в результате поляризации на поверхности диэлектрика в электрическом поле.Они не могут передвигаться свободно и перемещаться только внутри молекул. Сторонние заряды-первичные источники электрического поля в диэлектрике, E=E0+Eштрих (E-вектор)Е0вектор и Ештрих вектор – это макрополя. ПОЛЯРНЫЕ МОЛЕКУЛЫ, молекулы, обладающие постоянным дипольным моментом в отсутствие внеш. электрич. поля. Дипольный момент присущ таким молекулам, у к-рых распределение электронного и ядерного зарядов не имеет центра симметрии. чем больше дипольный момент, тем сильнее полярность В-ва, образованные сильно полярными молекулами как правило, хорошо раств. В случае неполярных молекул происходит смещение в пределах молекул их положительных зарядов в направлении внешнего поля и отрицательных в противоположном направлении. Для вещества, состоящего из полярных молекул, под действием момента сил происходит преимущественное выстраивание молекул в направлении внешнего поля. В обоих случаях (неполярных и полярных молекул) в результате появляется дипольный момент и у всего объема диэлектрика.Поляризацией диэлектрика называется процесс, в результате которого физический обьект(атом, молекула, ТВ.тело идр.)приобретает электрический дипольный момент. Степень поляризации диэлектрика характеризуется векторной величиной, которая называется поляризованостью или вектором поляризации (P). Поляризованность определяется как электрический момент единицы объема диэлектрика
55. Теорема Гаусса для диэлектриков. Вектор электрического смещения. В диэлектрике теорема Гаусса справедлива для потока вектора электрической индукции D: 56. Проводники в ЭСП. Индукционные заряды. Напряженность и потенциал внутри и вблизи поверхности проводника. Электростатическая защита. Проводники - это вещества, в которых есть свободные заряды. Свободные заряды - заряды частиц, которые могут перемещаться внутри проводника (под действием электрического поля). К проводникам относятся в первую очередь металлы, в которых носителями свободных зарядов являются электроны. Электростатического поля внутри проводника нет. Если бы оно там было, свободные зарядыдвигались бы под действием кулоновских сил упорядоченно, чего в реальности не происходит. Внутри проводника напряжённость поля равна нулю, то поток напряжённости через любую замкнутую поверхность внутри него равен нулю. Значит, равен нулю заряд внутри любой замкнутой поверхности внутри проводника. Отсюда следует, что, так как внутри проводника заряда нет, то весь его заряд сосредоточен на поверхности. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды. Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды – индукционными зарядами. Индукционные заряды создают свое собственное поле 57.Электроемкость уединенного проводника. Конденсаторы. Емкость плоского конденсатора. Соединения конденсаторов. Электроемкость уединенного проводника - это физическая величина, численно равная заряду, необходимoму для повышения потенциала проводника на 1 В. Электрический конденсатор представляет собой систему из двух проводников электрического тока (обкладок), разделенных диэлектриком. Основной характеристикой конденсатора является его электрическая емкость, или просто емкость, которая характеризует способность конденсатора накапливать электрический заряд. Емкость конденсатора определяется отношением накапливаемого на одной из обкладок электрического заряда к приложенному напряжению: С=q/U. Она зависит от материала диэлектрика, формы и взаимного расположения обкладок.В цепях постоянного тока конденсатор не проводит электрический ток, поскольку между его обкладками находится диэлектрик.Электроемкость плоского конденсатора. Плоский конденсатор представляет из себя две плоские пластины, расстояние между которыми d мало по сравнению с их линейными размерами. Это предположение позволяет пренебречь малыми областями неоднородности электрического поля у краев пластин и считать, что все поле однородно и сосредоточено между пластинами. Заряд конденсатора Q - это заряд положительно заряженной пластины.Емкость конденсатора определяется как величина, численно равная заряду, необходимому для изменения разности потенциалов пластин, напряжения U между обкладками, на 1 В:
58.Энергия системы точечных зарядов. Энергия заряженного конденсатора. Энергия ЭСП. Плотность энергии. используем формулу потенциала уединенного заряда поэтому W1 = W2 = W и 59. Электрический ток в проводниках. Характеристики электрического тока. Источник тока. ЭДС. Однородный и неоднородный участки цепи.электрическим током называется упорядоченное движение заряженных частиц. Чтобы электрический ток в проводнике существовал длительное время, необходимо все это время поддерживать в нем электрическое поле. Электрическое поле в проводниках создается и может длительное время поддерживаться источниками электрического тока. В настоящее время человечество использует четыре основные источника тока: статический, химический, механический и полупроводниковый, но во всяком из них совершается работа по разделению положительно и отрицательно заряженных частиц. Раздельные частицы накапливаются на полюсах источника тока. Один полюс источника тока заряжается положительно, другой - отрицательно.Электрический ток в проводниках представляет собой: в металлах — направленное движение электронов (проводники первого рода); в электролитах — направленное движение положительных и отрицательных ионов; в плазме — направленное движение электронов и ионов обоих знаков За направление электрического тока условились считать направление движения положительно заряженных частиц. Сила тока — скалярная физическая величина, равная отношением заряда Δ q, проходящего через поперечное сечение проводника за некоторый промежуток времени Δ t, к этому промежутку: 60. Законы Ома и Джоуля-Ленца в дифференциальной и интегральной формах. Закон Ома для однородного участка цепи. Сила тока в участке цепи прямо пропорциональна напряжению на нем и обратно пропорциональна сопротивлению участка I = U / R. Закон Ома для неоднородного участка цепи- Сила тока в неоднородном участке цепи прямо пропорциональна сумме разности потенциалов на его концах и действующей в нем ЭДС и обратно пропорциональна сопротивлению участка: I = (φ 1 − φ 2 + ε ) / (R + r), где R - сопротивление внешнего участка цепи, r - внутреннее сопротивление.. Закон Ома для полной цепи Сила тока в цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна сумме сопротивлений внешнего и внутреннего участков цепи: I = ε / (R + r).Закон Джоуля-Ленца. Количество теплоты, выделившейся в проводнике при прохождении по нему электрического тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока: Q = I2 R t.Если в проводнике течет постоянный ток и проводник остается неподвижным, то работа сторонних сил расходуется на его нагревание. Опыт показывает, что в любом проводнике происходит выделение теплоты, равное работе, совершаемой электрическими силами по переносу заряда вдоль проводника. Если на концах участка проводника имеется разность потенциалов 61. Соединение сопротивлений в ЭДС. Правила Кирхгофа. Основной характеристики источника является электродвижущая сила [1] (ЭДС) – работа, совершаемая сторонними силами по перемещению единичного положительного заряда
|
Последнее изменение этой страницы: 2019-05-18; Просмотров: 476; Нарушение авторского права страницы