Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Элементы зонной теории твердого тела
Зонная теория является основой современных представлений о механизмах различных физических явлений, происходящих в твердом кристаллическом веществе при воздействии на него электромагнитного поля. Зонная теория твердого тела – это теория валентных электронов, движущихся в периодическом потенциальном поле, кристаллической решетки. Как отмечалось, отдельные атомы имеют дискретный энергетический спектр, т. е. электроны могут занимать лишь вполне определенные энергетические уровни. Часть этих уровней заполнена при нормальном, невозбужденном состоянии атома, на других уровнях электроны могут находиться только тогда, когда атом подвергнется внешнему энергетическому воздействию, т. е. когда он возбужден. Стремясь к устойчивому состоянию, атом излучает избыток энергии в момент перехода электронов с возбужденных уровней на уровни, на которых его энергия минимальна. Сказанное характеризуется энергетической диаграммой атома, приведенной на рис. 1.11,а.
Рис. 1.11. Схема расположения энергетических уровней: а – уединенного атома; б – неметаллического твердого тела
Если имеется система из N одинаковых атомов, достаточно удаленных друг от друга (например, газообразное вещество), то взаимодействие между атомами практически отсутствует и энергетические уровни электронов остаются без изменений. Обменное взаимодействие. При конденсации газообразного вещества в жидкость, а затем при образовании кристаллической решетки твердого тела все имеющиеся у атомов данного типа электронные уровни (как заполненные электронами, так и незаполненные) несколько смещаются вследствие действия соседних атомов друг на друга. В частности, притяжение электронов одного атома ядром соседнего снижает высоту потенциального барьера, разделяющего электроны в уединенных атомах. Главное состоит в том, что при сближении атомов происходит перекрытие электронных оболочек, а это, в свою очередь, существенно изменяет характер движения электронов. Благодаря перекрытию оболочек, электроны могут без изменения энергии посредством обмена переходить от одного атома к другому, т. е. перемещаться по кристаллу. Обменное взаимодействие имеет чисто квантовую природу и является следствием неразличимости электронов. В этом случае уже нельзя говорить о принадлежности того или иного электрона определенному атому – каждый валентный электрон принадлежит всем атомам кристаллической решетки одновременно. Иными словами, при перекрытии электронных оболочек происходит обобществление электронов. Энергетические зоны. Вследствие обменного взаимодействия дискретные энергетические уровни изолированного атома расщепляются в энергетические зоны, как это показано для неметаллического твердого тела на рис. 1.11, б. Размещенные энергетические зоны разделены запрещенными интервалами энергии. Ширина разрешенных энергетических зон не зависит от размеров кристалла, а определяется лишь природой атомов, образующих твердое тело, и симметрией кристаллической решетки. Обозначим через ЭА энергию обменного взаимодействия между двумя соседними атомами. Тогда для кристаллов с простой кубической решеткой, где каждый атом имеет 6 ближайших соседей, расщепление уровней в зоны составит 12 ЭА; для гранецентрированной решетки (первая координационная сфера состоит из 12 атомов) ширина энергетической разрешенной зоны составит 24 ЭА, а в объемноцентрированной (у каждого атома 8 соседей) – 16 ЭА. Поскольку обменная энергия ЭА зависит от степени перекрытия электронных оболочек, то уровни энергии внутренних оболочек, которые сильнее локализованы вблизи ядра, расщепляются меньше, чем уровни валентных электронов. Расщеплению в зону подвержены не только нормальные (стационарные), но и возбужденные энергетические уровни. Ширина разрешенных зон при перемещении вверх по энергетической шкале возрастает, а величина запрещенных энергетических зазоров соответственно уменьшается. Каждая зона состоит из множества энергетических уровней. Очевидно, их количество определяется числом атомов, составляющих твердое тело. Это значит, что в кристалле конечных размеров расстояние между уровнями обратно пропорционально числу атомов. В кристалле объемом в 1 см3 содержится 1022 – 1023 атомов. Экспериментальные данные показывают, что энергетическая протяженность зоны валентных электронов не превышает единиц электронвольт. Отсюда можно сделать вывод, что уровни в зоне отстоят друг от друга по энергии на Распределение электронов. В соответствии с принципом Паули на каждом энергетическом уровне может находиться не более двух электронов, причем с противоположным направлением спинового магнитного момента. Поэтому число электронных состояний в зоне оказывается конечным и равным числу соответствующих атомных состояний. Конечным оказывается и число электронов, заполняющих данную энергетическую зону, что играет важную роль в формировании энергетического спектра кристалла. Подобно энергетическим уровням в изолированных атомах энергетические зоны могут быть полностью заполненными, частично заполненными и свободными. Внутренние оболочки в изолированных атомах заполнены, поэтому соответствующие им зоны также оказываются заполненными. Самую верхнюю из заполненных электронами зон называют валентной. Эта зона соответствует энергетическим уровням электронов внешней оболочки в изолированных атомах. Ближайшую к ней свободную, незаполненную электронами зону называют зоной проводимости. Взаимное положение этих двух зон определяет большинство процессов, происходящих в твердом теле. Выводы зонной теории. Характер энергетического спектра у металлических проводников, полупроводников и диэлектриков существенно различен. В металлических проводниках валентная зона заполнена не полностью или перекрывается с зоной проводимости. В полупроводниках и диэлектриках зона проводимости и валентная зона разделены некоторым энергетическим зазором, называемым запрещенной зоной. Формально к полупроводникам относят вещества, у которых запрещенная зона меньше 3 эВ. Вещества с более широкой запрещенной зоной относят к диэлектрикам. У реальных диэлектриков ширина запрещенной зоны может достигать 10 эВ. Различие в положении энергетических зон у диэлектриков, полупроводников и металлических проводников показано на рис. 1.12.
Рис. 1.12. Энергетическое отличие диэлектриков от полупроводников и металлических проводников с точки зрения зонной теории твердого тела: 1 – заполненная электронами зона; 2 – зона свободных энергетических уровней; 3 – запрещенная зона шириной ΔЭ
Согласно зонной теории, электроны валентной зоны имеют практически одинаковую свободу движения во всех твердых телах независимо от того, являются ли они металлами или диэлектриками. Движение осуществляется путем туннельного перехода электронов от атома к атому. Для объяснения различий в электрических свойствах материалов надо принять во внимание различную реакцию на внешнее электрическое поле электронов заполненной и незаполненной зон. Внешнее электрическое поле стремится нарушить симметрию в распределении электронов по скоростям, ускоряя электроны, движущиеся в направлении действующих электрических сил, и замедляя частицы с противоположно направленным импульсом. Однако подобное ускорение и замедление связано с изменением энергии электронов, что должно сопровождаться переходом их в новые квантовые состояния. Очевидно, такие переходы могут осуществляться лишь в том случае, если в энергетической зоне имеются свободные уровни. В типичных случаях добавочная энергия, приобретаемая электронами на длине свободного пробега под действием электрического поля, составляет 10-3 – 10-4 эВ, т. е. намного превосходит расстояние между подуровнями в зоне. В металлах, где зона не полностью укомплектована электронами, даже слабое поле способно сообщить электронам достаточный импульс, чтобы вызвать их переход на близлежащие свободные уровни. По этой причине металлы являются хорошими проводниками электрического тока. В полупроводниках и диэлектриках при температуре 0 К все электроны находятся в валентной зоне, а зона проводимости абсолютно свободна. Электроны полностью заполненной зоны не могут принимать участия в создании электрического тока. Для появления электропроводности необходимо часть электронов перевести из валентной зоны в зону проводимости. Энергии электрического поля недостаточно для осуществления такого перехода, требуется более сильное энергетическое воздействие, например нагревание твердого тела. Cредняя кинетическая энергия тепловых колебаний атомов в кристаллической решетке приблизительно равна (3/2) kT . При комнатной температуре эта величина составляет приблизительно 0,04 эВ, что в общем случае существенно меньше ширины запрещенной зоны ΔЭ. Однако следует иметь в виду, что тепловая энергия неравномерно распределяется между частицами. В каждый момент времени имеется небольшое число атомов, у которых амплитуда и энергия тепловых колебаний значительно превышают среднее значение. В процессе тепловых колебаний атомы взаимодействуют не только друг с другом, но и с электронами, передавая им часть тепловой энергии. Именно за счет таких тепловых флуктуаций некоторые из электронов могут перейти из валентной зоны в зону проводимости. Очевидно, чем выше температура и меньше запрещенная зона, тем выше интенсивность межзонных переходов. У диэлектриков запрещенная зона может быть настолько велика, что электронная электропроводность не играет определенной роли. При каждом акте возбуждения и перехода электронов в зону проводимости появляются энергетические вакансии в распределении электронов по состояниям валентной зоны, называемые «дырками». При наличии дырок электроны валентной зоны могут совершать эстафетные переходы с уровня на уровень. Во внешнем электрическом поле дырка движется противоположно движению электрона, т. е. ведет себя как некоторый положительный заряд с отрицательной эффективной массой. Таким образом, дырки обеспечивают участие валентных электронов в процессе электропроводности. Процесс перехода электронов в свободное состояние сопровождается и обратным явлением, т. е. возвратом электронов в нормальное состояние. В результате в веществе при любой температуре наступает динамическое равновесие т. е количество электронов, переходящих в свободную зону, становится равным количеству электронов, возвращающихся обратно в нормальное состояние. С повышением температуры число свободных электронов в полупроводнике возрастает, а с понижением температуры до абсолютного нуля – убывает вплоть до нуля. Значит, вещество, представляющее собой при одних температурах диэлектрик, при других более высоких приобретает проводимость, т. е. наступает новое качественное состояние вещества. Различие между проводимостями двух типов материалов – металлов и неметаллов – наиболее значительно при температурах, приближающихся к абсолютному нулю; различие же между двумя классами неметаллов – полупроводниками и диэлектриками – исчезает по мере приближения температуры к абсолютному нулю. Рис. 1.13. Распределение плотности состояний в энергетической зоне
Электроны, находящиеся в зоне проводимости, нельзя считать абсолютно свободными. Такие электроны неизбежно будут взаимодействовать с периодическим потенциальным полем кристаллической решетки. При математическом описании поведения электронов в зоне проводимости пользуются понятием эффективной массы. Эффективная масса не определяет ни инерционных, ни гравитационных свойств электрона, однако вводя понятие эффективной массы, можно движение реального электрона в кристалле с массой т0 описывать как движение абсолютно свободного электрона, т. е. эффективная масса учитывает сложный характер взаимодействия электрона с кристаллической решеткой при его движении под действием силы внешнего электрического поля. Эффективная масса может во много раз отличаться от массы свободного электрона. Упрощенная диаграмма, изображенная на рис. 1.11,б, не учитывает то обстоятельство, что состояния внутри энергетической зоны распределены неравномерно. С помощью квантовой механики можно показать, что плотность состояний N (Э) будет наибольшей в середине энергетической зоны (рис. 1.13). Кроме того, плотность состояний, т. е. их число на единичный интервал энергии, вблизи краев зоны с увеличением энергии возрастает по параболическому закону: , (1.1) где — эффективная масса электрона. Ширина запрещенной зоны меняется с изменением температуры. Это происходит по двум основным причинам: из-за изменения амплитуды тепловых колебаний атомов решетки и из-за изменения междуатомных расстояний, т. е. объема тела. С ростом температуры возрастает амплитуда тепловых колебаний атомов, увеличивается степень их взаимодействия и степень расщепления энергетических уровней. Поэтому разрешенные зоны становятся шире, а запрещенные – соответственно уже. При изменении межатомных расстояний в зависимости от характера расщепления уровней ширина запрещенной зоны может как увеличиваться, так и уменьшаться (рис. 1.11). Аналогичные изменения ширины зоны происходят под действием давления на кристалл, поскольку при этом изменяются межатомные расстояния. Энергию, необходимую для перевода электрона в свободное состояние или для образования дырки, может дать не только тепловое движение, но и другие источники энергии, например поглощенная материалом энергия света, энергия потока электронов и ядерных частиц, энергия электрических и магнитных полей, механическая энергия т. д. Увеличение же числа свободных электронов или дырок под воздействием какого-либо вида энергии способствует повышению электропроводности, увеличению тока, появлению электродвижущих сил. Электрические свойства определяются условиями взаимодействия и расстояниями между атомами вещества и не являются непременной особенностью данного атома. Как было показано, углерод в виде алмаза является диэлектриком, а в виде графита он обладает большой проводимостью. Примеси и точечные дефекты, нарушающие строгую периодичность структуры, создают особые энергетические уровни, которые располагаются в запрещенной зоне идеального кристалла. Если примесные атомы или дефекты расположены достаточно далеко друг от друга, то взаимодействие между ними отсутствует, а соответствующие им энергетические уровни оказываются дискретными. Поскольку туннельные переходы электронов между удаленными примесными атомами практически невозможны, то дополнительные электронные состояния локализованы в определенном месте решетки, т. е. на дефекте структуры. При достаточно высокой концентрации примесных атомов расстояния между ними сравнимы с размерами атомов, благодаря чему возможно перекрытие электронных оболочек ближайших атомов примеси. В этом случае дискретные энергетические уровни примесей расщепляются в энергетическую зону примесных состояний, способную обеспечить проводимость, если не все уровни в этой зоне заполнены электронами. Таким образом, электрические свойства всех твердых тел определяют теоретически с единой точки зрения – энергия возбуждения носителей заряда или энергия активации электропроводности равна нулю у металлов и непрерывно возрастает в ряду полупроводников, условно переходящих при увеличении этой энергии в ряд диэлектриков; хорошо проводящие металлы и хорошо изолирующие диэлектрики представляют собой крайние члены того непрерывного ряда, в котором можно расположить твердые тела по этому признаку. Подводя итог сказанному, следует подчеркнуть, что зонная теория строго применима к твердым телам с ковалентными и металлическими связями. Разделение твердых тел на полупроводники и диэлектрики носит в значительной мере условный характер. По мере того как в качестве полупроводников начинают использоваться материалы со все более широкой запрещенной зоной, деление тел на полупроводники и диэлектрики постепенно утрачивает свой изначальный смысл.
Вопросы для самопроверки 1. Приведите общую классификацию материалов, используемых в электронной технике. 2. Каковы основные виды химической связи в материалах и чем они обусловлены? 3. В чем различия между монокристаллами, поликристаллическими и аморфными веществами? 4. Приведите примеры точечных и протяженных дефектов структуры в реальных кристаллах. 5. Охарактеризуйте явление полиморфизма. Приведите примеры полиморфных веществ. 6. Почему при образовании твердого тела энергетические уровни атомов расщепляются в энергетические зоны? 7. От чего зависит ширина разрешенной зоны и число уровней в ней? 8. Чем различаются зонные структуры проводника, полупроводника и диэлектрика? 9. В чем различие между электронами проводимости и свободными электронами?
Проводниковые материалы Проводниковые материалы – это материалы, служащие проводниками электрического тока. Их удельное электрическое сопротивление мало, и составляет от 10-8 до 10-4 Ом∙м. Проводники могут быть твердыми веществами: кристаллические металлы и сплавы, углерод – это проводники 1-го рода; жидкими – электролиты – это проводники 2-го рода; газообразными – газоразрядная плазма – проводники 3-го рода. Рассмотрим проводники 1-го рода, которые практически не имеют запрещенной зоны, так как зоны валентная и проводимости у них перекрываются (рис. 21). Металлы обладают металлическим типом химической связи, при которой валентные электроны атомов обобществлены и образуют так называемый «свободный» электронный газ. Атомы, расположенные в узлах (междуузлиях) кристаллической решетки, являются положительно заряженными ионами, так как они отдали свои электроны «в общее пользование». В такой системе имеет место большое количество свободных носителей заряда – электронов. Основные электрические параметры проводников, отражающие их свойства, приводятся в табл. 2.2.
Рис. 2.1. Структурная схема проводников |
Последнее изменение этой страницы: 2019-03-21; Просмотров: 252; Нарушение авторского права страницы