Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Управление отношением (ratio control).



Иногда стабилизация отношения между двумя или большим количеством переменных процесса более значима, чем стабилизация их абсолютных значений. В таких случаях используются системы пропорционального управления.

Обычно переменные процесса, для которых должно сохраняться заданное отношение, представляют собой величины расхода компонентов или величины объемов, что наиболее характерно для процессов сжигания (например, направления топлива на форсунки горелки). На рисунке 9 количество топлива в контуре управления 2 поддерживается в соотношении FAC с количеством воздуха в контуре 1, задаваемым уставкой SP1.

Рис. 9. Управление отношением.

Управление отношением чаще всего используется в следующих процессах:

1. Смешение двух или нескольких потоков веществ для производства смесей заданного химического состава;

2. Смешение двух или нескольких веществ для производства смесей, обладающих заданными физическими свойствами;

3. Поддержание заданного соотношения “топливо/воздух” для достижения оптимального процесса горения.

 

На практике настоящий PID-регулятор реализуется в виде программного функционального блока, выполняемого в контроллере. На рисунке 10 изображен блок PID-регулирования, взятый из среды разработки реальной системы управления.

Рис. 10. Конфигурация функционального блока ПИД-регулятора.

Перечислим наиболее важные параметры блока:

1. SP – значение уставки;

2. PV – значение регулируемой величины;

3. OP –значение выходного сигнала (управляющего сигнала);

4. SL – вход для задания уставки в автоматическом режиме;

5. RemoteSP – вход для задания уставки в удаленном режиме;

6. Mode – вход для задания режима работы регулятора;

7. XP – коэффициент пропорциональной составляющей;

8. TD – коэффициент дифференциальной составляющей;

9. TI – коэффициент интегральной составляющей;

10. SL_Track – вход для включения режима трэкинга.

 

Ранее мы подробно рассмотрели первые три параметра, поэтому на них останавливаться не будем. Очень интересным является параметр Mode. Дело в том, что регулятор может работать, как минимум, в трех режимах задания уставки: автоматическом (automatic), удаленном (remote) и ручном (manual).

1. Автоматический режим наиболее часто используется; в этом режиме уставка регулятора задается вручную оператором при помощи входа SL.

2. При работе в удаленном режиме уставка программно формируется в другом функциональном блоке и пересылается на вход регулятора RemoteSP.

3. При работе в ручном режиме оператор имеет возможность напрямую задавать значение управляющего сигнала, манипулируя выходом OP; в этом режиме регулятор приостанавливает формирование управляющего воздействия OP по алгоритму PID.

Пример. Допустим, у нас есть емкость с водой, снабженная нагревателем. В данный момент поддерживается температура воды равная 80 С. В этом случае у нас:

PV – это текущая температура воды, измеряемая датчиком;

SP – текущая уставка, задаваемая оператором;

OP – сигнал управления мощностью нагревателя;

Пусть в данный момент PV=SP=80 °C, т.е. рассогласования нет. При этом OP=65% (нагреватель работает на 65% своей номинальной мощности), и PID-регулятор находится в автоматическом режиме. Теперь по каким-либо причинам оператор решает перевести регулятор в ручной режим и устанавливает новое значение OP=20%. Вследствие уменьшения мощности нагрева, по прошествии какого-то времени температура воды падает до 35 °С. Теперь PV=35 °C, SP=80 °C, OP=20%. Представим, что случится, если регулятор перевести обратно в автоматический режим. Рассогласование станет равным SP-PV=80-35=45 °C, а, следовательно, пропорциональная составляющая будет равна XP*45/100. В момент перехода регулятора в автоматический режим это значение P*45/100 (вместе с другими составляющими) передается на выход OP и вызывает скачкообразное изменение управляющего сигнала соответственно на P*45/100%. Такое резкое (скачкообразное) изменение управляющего сигнала называется “ударом”. Как отреагирует на это нагревательный элемент? Наверно, не лучшим образом. Хотя с нагревательным элементом, скорее всего, ничего не случится. Гораздо хуже, если в качестве исполнительного механизма выступает позиционирующее устройство.

Для борьбы с эти явлением придумали хитрую схему. При работе регулятора в ручном режиме его уставка SP постоянно отслеживает текущее значение PV (функция tracking), так что рассогласование всегда равно 0 (SP=PV). В этом случае при переходе из ручного режима в автоматический или удаленный удара не наблюдается. Параметр SL_Track нужен для включения/выключения этой функции. Как правило, режим трэкинга оставляют включенным SL_Track=1.

Рассмотрим еще один пример управления процессом, в котором компьютерная система должна регулировать температуру пластика. Значение температуры поступает в виде непрерывного сигнала от датчика. Блок-схема регулирования температуры представлена на рис. 11. Программа считывает температуру пластика каждые 10 секунд, определяет необходимое время нагрева (переменная heat_time), включает нагреватель и затем переходит в цикл занятого ожидания (busy loop) обновления счетчика времени (переменная С).

Рис.11. Блок-схема регулирования температуры пластика.


Поделиться:



Последнее изменение этой страницы: 2019-03-20; Просмотров: 279; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.009 с.)
Главная | Случайная страница | Обратная связь