Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Геометрический и физический смысл производной. Определение возрастающей у убывающей функции на отрезке
1) Физический смысл производной. Если функция y = f(x) и ее аргумент x являются физическими величинами, то производная – скорость изменения переменной y относительно переменной x в точке . Например, если S = S(t) – расстояние, проходимое точкой за время t, то ее производная – скорость в момент времени . Если q = q(t) – количество электричества, протекающее через поперечное сечение проводника в момент времени t, то – скорость изменения количества электричества в момент времени , т.е. сила тока в момент времени . 2) Геометрический смысл производной. Пусть – некоторая кривая, – точка на кривой . Любая прямая, пересекающая не менее чем в двух точках называется секущей. Касательной к кривой в точке называется предельное положение секущей , если точка стремится к , двигаясь по кривой. Из определения очевидно, что если касательная к кривой в точке существует, то она единственная Рассмотрим кривую y = f(x) (т.е. график функции y = f(x)). Пусть в точке он имеет невертикальную касательную . Ее уравнение: (уравнение прямой, проходящей через точку и имеющую угловой коэффициент k). По определению углового коэффициента , где – угол наклона прямой к оси . Пусть – угол наклона секущей к оси , где . Так как – касательная, то при ⇒ ⇒ .
Определение возрастающей у убывающей функции на отрезке Определение возрастающей функции. Функция y=f(x) возрастает на интервале X, если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции. Определение убывающей функции. Функция y=f(x) убывает на интервале X, если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции. Достаточные условия возрастания и убывания функции. На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции. Вот формулировки признаков возрастания и убывания функции на интервале: · если производная функции y=f(x) положительна для любого x из интервала X, то функция возрастает на X; · если производная функции y=f(x) отрицательна для любого x из интервала X, то функция убывает на X. Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо: · найти область определения функции; · найти производную функции; · решить неравенства и на области определения; · к полученным промежуткам добавить граничные точки, в которых функция определена и непрерывна. Определение точки максимума и минимума функции Точки экстремума Определение. Функция f(x) имеет в точке х1 максимум, если ее значение в этой точке больше значений во всех точках некоторого интервала, содержащего точку х1. Функция f(x) имеет в точке х2 минимум, если f(x2 +Dx) > f(x2) при любом Dх (Dх может быть и отрицательным). Очевидно, что функция, определенная на отрезке может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные. Теорема. (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х1 и точка х1 является точкой экстремума, то производная функции обращается в нуль в этой точке. Следствие. Обратное утверждение неверно. Если производная функции в некоторой точке равна нулю, то это еще не значит, что в этой точке функция имеет экстремум. Красноречивый пример этого – функция у = х3, производная которой в точке х = 0 равна нулю, однако в этой точке функция имеет только перегиб, а не максимум или минимум. |
Последнее изменение этой страницы: 2019-03-31; Просмотров: 222; Нарушение авторского права страницы