Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Маркировка поршня и поршневого пальца



Цветовой индекс Диаметр отверстия в поршне, мм Диаметр поршневого пальца, мм
Белый Черный Красный Зеленый 20,9930-20,9905 20,9905—20,9880 20,9880—20,9855 20,9855—20,9830 21,0000—20,9975 20,9975—20,9950 20,9950-20,9925 20,9925—20,9900

 

 

Поршневой палец установлен в поршне с натягом 0,045—0,095 мм, однако при нагревании поршень расширяется больше, чем палец и последний свободно вращается и в поршне, и в шатуне. Такая посадка поршневого, пальца называется плавающей. За счет плавающей посадки палец изнашивается меньше и более равномерно по всей окружности

Кривошипно-шатунный механизм. Кривошипно-шатунный механизм (КШМ) предназначен для пре­образования поступатель­ного движения поршня во вращательное движение коленчатого вала. В него входят коленчатый вал и шатуны.

Коленчатый вал со­стоит из двух коренных шеек, двух шатунных шеек и трех щек (рис. 2.8). Передняя и задняя коренные шейки выпол­нены заодно с передней и задней щекой соответ­ственно. Эти детали ча­сто называют «цапфами». Шатунные шейки распо­ложены на пальцах, ко­торые запрессованы в пе­реднюю, среднюю и зад­нюю щеки. Для сборки и разборки коленчатого вала требуются большие усилия и высокая точность.

Без специального обо­рудования выполнить эти операции невозможно, по­ этому ремонт кривошипного-шатунного механизма производят в специализированных мастерских.

Шатун соединен с коленчатым валом с помощью роликового подшипника с сепаратором, поэтому ниж­няя головка шатуна неразъемная (в отличие от разъ­емных шатунов с подшипниками скольжения). Это создает неудобство при ремонте, однако роликовый подшипник нижней головки шатуна менее требовате­лен к условиям смазывания качеству масла и его очистке. Преимуществом коленчатого вала с роликовыми подшипниками в нижней головке шатуна явля­ется и то, что двигатель с таким валом легче запускается в холодное время

Кривошипно-шатунный механизм вращается в двух коренных подшипниках, которые испытывают преимущественно радиальную нагрузку. Однако при выжиме сцепления возникает и осевая нагрузка, поэтому в качестве коренных подшипников используют радиально-упорные шариковые подшипники, которые могут воспринимать как радиальную так и осевую нагрузки.

Механизм газораспределения. Он служит для своевременного впуска горючей смеси в цилиндры двигателя и выпуска из них отработавших газов в со­ответствии с диаграммой газораспределения.

Диаграмма газораспределения показывает про­должительность процессов рабочего цикла двигателя (впуск, сжатие, рабочий ход, выпуск) в зависимости от угла поворота коленчатого вала.

Рабочий цикл двигателя — это совокупность про­цессов, периодически повторяющихся в определенной последовательности. Работа механизма газораспреде­ления должна быть согласована с работой кривошипно-шатунного механизма. Если механизм газораспре­деления собрать произвольно, то детали двигателя будут вращаться, клапаны будут открываться и за­крываться, но двигатель работать не будет, так как впуск смеси и выпуск отработавших газов не будут согласованы с движением поршней в цилиндрах. Устройство механизма газораспределения показано на рис. 2.9.

От коленчатого вала через зубчатые колеса получает вращение распределительный (или кулачковый) вал, в результате чего его кулачки в определенной последовательности воздействуют на толкатели, кото­рые перемещают штанги. Штанги поворачивают двуплечие рычаги —коромысла, а те, преодолевая усилие пружин, открывают клапаны. При дальнейшем вращении распределительного вала кулачки перестают давить на толкатели, усилия на кла­паны от толкателей не передаются, и под действием пружин клапаны закры­ваются. Одновременно с закрытием кла­панов под действием пружин занимают исходное положение и остальные детали: коромысла, штанги, толкатели.

Ряд деталей механизма газораспреде­ления, в частности клапаны, совершают возвратно-поступательное движение со значительными ускорениями. При этом в механизме газораспределения возни­кают довольно большие силы инерции. При частоте вращения двигателя более 6500 мин-' силы инерции могут быть ( настолько велики, что вызовут нарушение кинематической связи звеньев механизма между и кулачком и клапаном, изменение закона движения клапана от определенного профилем кулачка и, как следствие, соударение клапанов. В ре­зультате повреждаются оба клапана и нередко поршень, цилиндр и головка цилиндра. Поэтому в процессе эксплуатации важно не превышать установленные для двигателя максимальные частоты вращения.

Так как тахометра на мотоциклах ИМЗ нет, о частоте вращения коленча­того вала можно судить по показаниям спидометра. Частоте вращения 5000 мин-1 будут приблизительно соответствовать скорости: на 1-й передаче — 36 км/ч. На 2-йпередаче — 57 км/ч, на 3 передаче 76 км/ч, на 4-й передаче— 100 (км/ч). При этом следует учесть, что неточность в эти соотношения вносит несоот­ветствие давления шин, погрешности показаний спидометра и ряд других факторов.

Для согласованного движения поршней и клапа­нов зубчатые колеса привода распределительного вала устанавливают по меткам, которые наносят на их торцы. При переборке механизма газораспределе­ния на это надо обратить внимание.

Для уменьшения шума и динамических нагрузок на привод механизма газораспределения в процессе работы двигателя зубчатые колеса выполнены косозубыми. Для обеспечения оптимального зазора в за­цеплении зубчатые колеса делят попарно на группы. При замене их надо подбирать в соответствии с груп­пой картера, которая назначается в зависимости от межосевого расстояния отверстий привода газораспределения.

 


 

Группа картера 0 1 2 3 4 5 5,5
Индекс комплекта зубча­тых колес   13-18 12-17 11-16 10-15 9-14 8-12 6-10

Индекс комплекта зубчатых колес наносится электрографом на их торцы, а группа картера выби­вается в районе генератора справа (рис. 2.10, 2.11).

При правильном подборе зубчатых колес на новом двигателе боковой зазор должен быть в пределах 0.01 – 0.12 мм (рис. 2.12), а у изношенного двигателя)
не должен превышать 0,3 мм.

На всех моделях двигателей вплоть до М67-З6 применялись плоские толкатели. На последней модели ИМЗ-8.103 внедрены вращающиеся толкатели, которые более долговечны, не требуют частой регули­ровки зазоров в механизме газораспределения. Вра­щающиеся толкатели можно устанавливать на двигатели предыдущих моделей, но только в комплекте,
с соответствующим распределительным валом.



Смазочная система.

Смазочная система выполня­ет несколько функций: уменьшает трение между деталями, охлаждает наиболее нагретые детали, выно­сит продукты износа трущихся деталей и защищает детали от коррозии. Из этих функций первостепенное значение имеет снижение трения между деталями, поскольку трение вызывает износ, а, следовательно, преждевременное разрушение деталей. Кроме того, трение увеличи­вает механические по­тери.

Однако все эти функции связаны меж­ду собой, поэтому надо обеспечить хорошие, охлаждение (картер и поддон должны быть чистыми) и очистку масла. При перегре­ве вязкость масла уменьшится, оно будет выдавливаться из зазора между трущимися деталями, произойдет непосредственный контакт деталей (а не через масляную пленку), это может привести к образованию задиров и к разрушению. При плохой очистке масла мельчайшие частицы продуктов износа, попав на трущиеся детали и действуя как абразивный порошок, могут вызвать повышенный их износ.

Масло к трущимся деталям может подводиться несколькими способами: под давлением, разбрызги­ванием (барботажем), самотеком.

Наилучшие результаты дает первый способ. Мас­ло подводится к трущимся деталям под давлением, заполняет самые труднодоступные места и мельчай­шие зазоры, что обеспечивает эффективную смазку. Однако для этого способа требуется масляный насос, причем тем большей производительности, чем больше объектов смазывания. Кроме того, необходимы кана­лы, по которым масло подводится к трущимся дета­лям. Ввиду конструктивной сложности этот способ применяется только для высоконагруженных, ответ­ственных узлов.

Смазывание разбрызгиванием и самотеком, как правило, не требует дополнительных конструктивных решений. Масло, подводимое к вращающимся дета­лям под давлением, вытекает из зазоров и под действием центробежных сил разбрызгивается. Образовав­шийся масляный туман покрывает все детали, обеспечивая их смазку. Часть масляного тумана оседает . в специальных карманах, а затем самотеком поступа­ет к трущимся деталям, где вновь разбрызгивается «(от карманов у толкателей масло самотеком поступает в головку цилиндра и разбрызгивается коромыс­лами и пружинами).

Различают системы смазки с «сухим» картером и с «мокрым» картером. В системе с «сухим» картером имеется отдельный масляный резервуар, из которого масло нагнетающей секцией насоса подается в дви­гатель для смазки. После смазки деталей масло сте­кает в нижнюю часть двигателя, откуда откачиваю­щей секцией насоса подается обратно в масляный резервуар.

В смазочной системе с «мокрым» картером масля­ным резервуаром являются нижняя часть картера двигателя и поддон. Оттуда масло насосом подается в двигатель, после чего стекает обратно. Эта система проще, однако лучшие возможности для охлаждениям масла создаются в системе с «сухим» картером. Двигатель более компактный.

На двигателях Ирбитского мотоциклетного завода применяется смазочная система с «мокрым» карте­ром (рис. 2.13). Снизу к картеру крепится шестерен­ный масляный насос, который получает вращение че­рез зубчатые колеса и штангу от распределительного вала. Масляный насос закрыт сеткой, которая защи­щает его и смазочную систему от попадания крупных частиц примесей.

Масляный насос работает следующим образом (рис. 2.14). В корпусе с очень малыми зазорами по­мещены зубчатые колеса. При вращении в направлении, показанном стрелками, вверху зубчатые колеса выходят из зацепления.

При этом пространство во впадине между зубьями одного колеса, которое было занято зубом соседнего, освобождается, возникает разрежение. Под действием раз­режения масло через канал в корпусе засасывается во впади­ну между зубьями и начинает вращаться вместе с зубчатым колесом. Затем масло попадает на выход из насоса, где зубья входят в зацепление и выдавливают масло из впадины. Так как зазор между зубчатыми колесами и корпусом очень мал, масло не может перетекать обратно на вход в насос и поступает в мас­ляную магистраль двигателя.

Давление, которое создает ма­сляный насос, зависит от сопро­тивления масляной магистрали. При увеличении сопротивления (например, при засорении мас­лофильтра) давление может зна­чительно повыситься, что приве­дет к разрушению маслофильт­ра. Для того чтобы этого не произошло, а также, чтобы дви­гатель не остался без смазки, параллельно фильтру установлен перепускной клапан. Если фильтр чистый, то мас­ло, проходя через него, почти не встречает сопротивления и давления перед фильтром и за ним почти одинаковы. Пе­репускной клапан при этом закрыт, так как на шарик действуют с двух сторон почти одинаковые давления, и за счет усилия пружины шарик перекрывает канал.

При засорении фильтра масло, проходя через него, встречает большое сопротивление, поэтому дав­ление перед фильтром возрастает, а за фильтром па­дает. За счет разности давлений шарик преодолева­ет усилие пружины и открывает канал для прохода масла, минуя фильтр.

Поскольку при чистом фильтре весь масляный по­ток проходит через фильтр — такой фильтр называет­ся полнопоточным. Порядок смазывания деталей дви­гателя показан на рис. 2.13 стрелками.

Картер является основным силовым узлом двига­теля и предназначен для размещения остальных уз­лов (кривошипно-шатунного механизма, механизма газораспределения, цилиндропоршневой группы, сцепления). К картеру крепятся приборы электрообо­рудования. В нем выполнены каналы маслосистемы и элементы крепления двигателя к раме мотоцикла.

 

 

 

Для обеспечения сборки и разборки двигателя, картер выполнен из нескольких частей: собственно картера, корпуса заднего подшипника, корпуса переднего подшипника, крышки распределительной коробки, передней крышки, поддона. (см. рис.2.4).

При движении поршней к НМТ давление внутри картера может повыситься и под его воздействием может произойти выдавливание масла через сальни­ки наружу. Для предупреждения этого с помощью сапуна осуществляется вентиляция картера.

В крышке распределительной коробки соосно с кулачковым валом выполнено глухое отверстие, кото­рое радиальным каналом сообщается с атмосферой. В отверстие с малым зазором помещен цилиндриче­ский золотник — сапун, который получает вращение от распределительного вала.

Сапун имеет два радиальных отверстия, которые при движении поршней к НМТ периодически сообщаются через канал в крышке распределительной коробки с атмосферой. Избыток газов по радиальным пазам, расположенным на заднем торце сапуна, устремляется от периферии внутрь, а затем в атмосферу. При этом частицы масла, взвешенные в воздухе, как более тяжелые отбрасываются обратно под действи­ем центробежных сил, а воздух как более легкий; выходит в атмосферу. Далее при движении поршня сапун перекрывает канал в крышке распределительной коробки, за счет чего в картере поддерживается некоторое разрежение, препятствующее вытеканию масла.

Картер крепится к раме двумя шпильками. Через отверстие для передней шпильки, в случае образова­ния сквозных литейных пор, возможно вытекание, масла. Для предотвращения этого в отверстие вставляют алюминиевую трубку. При снятии и установке передней шпильки надо быть осторожным, чтобы не повредить трубку.

СИСТЕМЫ ВПУСКА И ВЫПУСКА

Система впуска состоит из воздухофильтра, кор­ректора, впускных патрубков (рис. 2.15) и служит для очистки воздуха, поступающего в двигатель, для уменьшения шума впуска и для корректировки со става смеси.

Первоначально воздух вместе с механическими примесями движется с определенней, скоростью вниз между корпусом фильтра и набивкой и ударяется в масляную ванну, образованную в нижней части корпуса фильтра. Механические примеси как более тяжелые и инертные прилипают к масляной пленке и оседают. Далее воздух как более легкий и менее инертный поворачивает вверх и проходит через на­бивку («путанку») фильтра, пропитанную маслом.

Оставшиеся в воздухе более легкие и менее инертные частицы, двигаясь по извилистым каналам «путанки», прилипают к масляной пленке. Таким образом, воздух подвергается двойной очистке: инерционной (около масляной ванны) и контактной (при контакте с поверхностью набивки, покрытой масляной пленкой).

По мере работы двигателя все большая поверх­ность «путанки» покрывается частицами пыли, поэтому фильтр необходимо периодически промывать и (промасливать). Поскольку впуск воздуха производится отдельны­ми порциями, то при этом возникают звуковые колебания, которые при эффективных глушителях шума выпуска становятся довольно заметными. Для умень­шения шума впуска корпус фильтра имеет двойные стенки, и полость между стенками

сообщается с внут­ренней полостью фильтра. Колебания давления, воз­никающие в фильтре при впуске, вызывают перетекание воздуха из внутренней полости фильтра в полость между двойными стен­ками и обратно, в ре­зультате чего колеба­ния давления на вы­ходе из фильтра уменьшаются, и уменьшается уровень шума.

Воздушный коррек­тор позволяет умень­шить подачу воздуха от фильтра в двига­тель за счет уменьше­ния проходного сече­ния. В результате этого в карбюраторе возни­кает

дополнительное разрежение и увеличи­вается подача топли­ва. Таким образом, воздушный корректор за счет корректировки (уменьшения) подачи воздуха изменяет со­став смеси в сторону обогащения.

Система выпуска служит для снижения шума при выпуске отработавших газов, а также для их отвода в наиболее удобное при эксплуатации место. В нее входят две выхлопные трубы, левый и правый глу­шители, соединенные патрубками, либо один глуши­тель на оба цилиндра. Выход отработавших газов не­посредственно в атмосферу сопровождается значи­тельным шумом, вследствие довольно высоких темпе­ратуры и давления газов. В системе выпуска газовый поток получает дополнительное расширение и за счет перегородок глушителей неоднократно изменяет направление. За счет этого температура и давление газов понижаются, уменьшается их скорость на вы­пуске и снижается уровень шума.

РЕМОНТ ДВИГАТЕЛЯ

Неисправности двигателя можно разделить на три группы:

- вызванные нарушением регулировки;

- возникающие вследствие естественного изнашива­ния деталей при длительной эксплуатации;

- случайные, вызванные поломкой деталей в резуль­тате скрытых дефектов, аварий, неправильной экс­плуатации.

При возникновении неисправностей последней группы детали, как правило, имеют значительные по­вреждения и ремонту не подлежат. Ремонт двигателя в этом случае будет заключаться в замене повреж­денных деталей новыми.

Неисправности могут быть вызваны нарушением регулировки: зажигания, карбюраторов, механизма газораспределения.

Порядок регулировки зажигания и карбюраторов будет дан в соответствующих разделах книги, здесь же мы подробнее рассмотрим регулировку механизма газораспределения.

В механизме газораспределения регулируется за­зор в приводе клапанов. Для того чтобы клапан гер­метично садился на седло, необходимо, чтобы в то время, когда кулачок не воздействует на толкатель, между клапаном и деталями привода был зазор. Если зазора не будет, то клапан упрется в привод и не сядет на седло.

Регулировку зазора производят на холодном двигателе. Так как при прогретом двигателе можно обжечься о горячие детали. Кроме, того, зазор при нагревании изменяется. Причем у нижнеклапанного двигателя М-72 зазор при прогреве двигателя уменьшается (поэтому зазор часто называют «тепловым»), а у верхнеклапанных двигателей зазор увеличивается. Поэтому для нижнеклапанных двигателей при регулировке назначают больший зазор, а для верхне­клапанных — меньший. Кстати, термин «тепловой за­зор» для верхнеклапанных двигателей мотоциклов «Урал» не совсем верен, хотя по привычке его часто употребляют. Если у верхнеклапанных двигателей зазор отрегулировать на горячем двигателе, то при остывании двигателя зазор может исчезнуть, что приведет к прогару клапанов.

Проверку и регулировку зазоров производят в со­ответствии с указанием инструкции или чаще, если появились признаки нарушения регулировки.

Внешним признаком увеличения зазоров в при­воде клапанов является звонкий металлический стук в головках цилиндров на прогретом двигателе. При­знаками отсутствия зазоров являются падение мощ­ности двигателя, «хлопки» в карбюратор.

Для проверки и регулировки зазоров между кла­паном и коромыслом необходимо снять крышку го­ловки цилиндра (не забывайте, что в головке нахо­дится масло) и установить коленчатый вал в такое положение, чтобы клапан был закрыт. В инструкции, указано, при каком положении, коленчатого вала ре­гулируют каждый из клапанов. Такая регулировка обеспечивает наиболее точные, значения зазоров с учетом биения кулачков.

Вследствие совершенствования технологии изготовления биение кулачков в настоящее время незначительно, поэтому можно предложить более простой способ регулировки. Для регулировки двух клапанов сразу в одном из цилиндров надо установить поршень в верхнюю мертвую точку в такте сжатия. Верхнюю мертвую точку можно определить по риске на маховике, а такт сжатия — по положению клапа­нов: оба клапана должны быть закрыты (у противо­положного цилиндра при этом один из клапанов будет открыт). После этого необходимо щупом проверить зазор между штоком клапана и коромыслом. При отсутствии щупа зазор можно проверить, прижав ко­ромысло к штоку клапана и вращая штангу. Штанга должна легко вращаться, но не должна иметь ощутимого осевого перемещения.

Если зазор не соответствует указанным в инструк­ции, то необходимо ослабить контргайку и отрегули­ровать его регулировочным болтом. После регулировки затянуть контргайку и вновь проверить зазор, так как при затяжке контргайки зазор часто изменяется. После регулировки зазоров в одном цилиндре повер­нуть коленчатый вал на 1 оборот и повторить опера­ции на втором цилиндре.

Рассмотрим порядок ремонта двигателя при воз­никновении неисправностей, появляющихся в процес­се эксплуатации.

В первые 8 – 10 тыс. км пробега чаще других встречается дефект «прихват» поршня, возникающий, как правило, в месте перехода юбки поршня в «холодильники». Если «прихват» незначительный (шири­на полос с задирами 5—7 мм), необходимо опилить, поршень мелким напильником или надфилем (пользоваться для этой цели наждачной бумагой нежела­тельно, так как абразивные частицы с бумаги будут вдавливаться в мягкий металл поршня и в дальней­шем вызовут повышенный износ цилиндра). Навола­кивание алюминия на зеркало цилиндра можно удалить и наждачной бумагой, так как зеркало цилиндра достаточно твердое, абразивные частицы не вдавливаются в него и легко удаляются при промывке цилиндра.

Если же «прихват» распространился на значи­тельную поверхность поршня, то в этом случае надо заменить поршень и кольца. Цилиндр при этом имеет значительные повреждения и требует расточки под ремонтный размер или замены. Данные, необходи­мые при ремонте двигателя, приведены в табл. 2.2 и в табл. 2.3.

Если одно или несколько колец поломаны и име­ют повышенный износ (задор, в стыке, более 1,2 мм), они подлежат замене, которую необходимо проводить с большой осторожностью вследствие хрупкости колец.

Для снятия и установки поршня можно изготовить универсальное приспособление (рис. 2.16). Для сня­тия поршня необходимо вынуть стопорные кольца поршневого пальца, отметить на поршне его располо­жение в двигателе (левый-правый, направление впе­ред), чтобы не нарушить приработку. Затем устано­вить в поршневой палец стержень, надеть на стер­жень втулку и шайбу и накрутить гайку М12. Далее установить на стержень торцевой ключ 10 X 12 с воротком и, вращая гайку М12, выпрессовать поршне­вой палец (рис. 2.17).


 






Таблица 2.3


Поделиться:



Последнее изменение этой страницы: 2019-04-10; Просмотров: 256; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.045 с.)
Главная | Случайная страница | Обратная связь