Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Стали со специальными свойствами.
Коррозионностойкие стали и сплавы (ГОСТ 5632—72), в том числе высоколегированные, обладают достаточной стойкостью против коррозии только в ограниченном числе сред. Они обязательно имеют в своем составе более 12,5% Сг, роль которого состоит в образовании на поверхности изделия защитной (пассивной) оксидной пленки, прерывающей контакт с агрессивной средой. При этом лучшей стойкостью против коррозии обладают те стали и сплавы, в которых все содержание хрома приходится на долю твердого раствора. Содержание углерода должно быть небольшим, чтобы уменьшить переход хрома в карбиды, так как это может снизить концентрацию хрома в защитной пленке. Для предотвращения выделений карбидов хрома используют также быстрое охлаждение из области γ-твердого раствора или легирование титаном, ванадием, ниобием или цирконием для связывания углерода в более устойчивые карбиды. Физико-химические свойства коррозионностойких сталей меняются в довольно широком диапазоне в зависимости от структуры. Для наиболее характерных сплавов этого назначения она может быть: • ферритно-карбидной и мартенситной (12X13, 20X13, 20Х17Н2, 30X13, • ферритной (15X28) — для растворов азотной и фосфорной кислот; • аустенитной (12Х18Н10Т) — в морской воде, органических и азот • мартенситно-стареющей (10Х17Н13МЗТ, 09Х15Н8Ю) - в фос- Коррозионностойкие стали и сплавы классифицируют в зависимости от агрессивности среды, в которой они используются, и по их основному потребительскому свойству на собственно коррозионностойкие, жаростойкие, жаропрочные и криогенные. Коррозионностойкие сталей (лопатки турбин, клапаны гидравлических прессов, пружины, карбюраторные иглы, диски, валы, трубы и др.) работают при температуре эксплуатации до 550°С. Для жаростойких и жаропрочных машиностроительных сталей используются малоуглеродистые (0,1...0,45% С) и высоколегированные (Si, Сг, №, Со и др.). Жаростойкие стали и сплавы получают на базе системы Fе + Сг + Ni с небольшим количеством кремния. Основным потребительским свойством этих сталей является температура эксплуатации, которая должна быть более 550°С. Жаростойкие стали устойчивы против газовой коррозии до 900...1200°С в воздухе, печных газах, в том числе серосодержащих (15X5, 15Х6СМ, 40Х9С2, ЗОХ13Н7С2, 12X17, 15X28), окислительных и науглераживающих (20Х20Н14С2) средах, но могут проявлять ползучесть при приложении больших нагрузок. Жаростойкие стали характеризуют по температуре начала интенсивного окисления. Величина этой температуры определяется содержанием хрома в сплаве. Так, при 15% Сг температура эксплуатации изделий составляет 950°С, а при 25% Сг - 1300°С. Жаростойкость зависит от химического состава стали, а не от ее структуры, поэтому жаростойкость ферритных и аустенитных сталей при равном количестве хрома практически одинакова. Жаростойкие стали и сплавы используются для производства труб, листов, деталей высокотемпературных установок, газовых турбин и поршневых двигателей, печных конвейеров, ящиков для цементации и др. Жаропрочные стали должны обладать высоким сопротивлением химической коррозии, но вместе с тем обеспечивать надежную работу под нагрузкой (т.е. иметь достаточно высокие пределы ползучести и длительной прочности) при температурах эксплуатации выше 400...450°С. Температурный уровень жаропрочности сплавов в первую очередь определяется прочностью межатомной связи, которая может быть оценена рядом физических констант, в том числе температурой плавления. Однако при данной температуре плавления жаропрочность сильно зависит от температуры рекристаллизации. В связи с этим стали аустенитного класса имеют более высокую жаропрочность по сравнению со сталями перлитного класса. При таких высоких температурах эксплуатации определяющую роль в разрушении играет не дислокационная структура, а диффузионные процессы, имеющие даже при небольших напряжениях направленный характер и способствующие развитию диффузионной ползучести. Так как диффузионные процессы легче всего протекают по границам зерен, имеющих повышенное количество дефектов строения, то кроме химического состава на жаропрочность существенное влияние оказывает структура металла. Обычно добиваются получения легированного твердого раствора с вкраплениями по границам зерен или внутри них дисперсных карбидных или интерметаллидных фаз. Более крупное зерно способствует повышению жаропрочности, хотя при этом снижается пластичность. Чрезвычайно важный фактор - стабильность структуры, так как перемещение атомов ведет к увеличению ползучести. Жаропрочные стали и сплавы в своем составе обязательно содержат никель, который обеспечивает существенное увеличение предела длительной коррозионной прочности при незначительном увеличении предела текучести и временного сопротивления, и марганец. Они могут дополнительно легироваться молибденом, вольфрамом, ниобием, титаном, бором, иодом и др. Так, микролегирование бором, а также редкоземельными и некоторыми щелочно-земельными металлами повышает такие характеристики, как число оборотов при кручении, пластичность и вязкость при высоких температурах. Механизм этого воздействия при микролегировании основан на рафинировании границ зерна и повышении межкристаллитной прочности. Химический состав и структура этих сталей весьма разнообразны. Рабочие температуры современных жаропрочных сплавов составляют примерно 0,45...0,8 Тш. Эти стали классифицируют по температуре эксплуатации (ГОСТ 20072-74): при 400...550°С -- 15ХМ, 12Х1МФ, 25Х2М1Ф, 20ХЗМВФ; при 500...600°С - 15Х5М, 40Х10С2М, 20X13; при 600...650°С -12Х18Н9Т, 45Х14Н14В2М, 10Х11Н23ТЗМР, ХН60Ю, ХН70Ю, ХН77ТЮР, ХН56ВМКЮ, ХН62МВКЮ. Жаропрочные стали и сплавы применяются для изготовления труб, клапанных, паро- и газотурбинных деталей (роторы, лопатки, диски и др.). Криогенные машиностроительные стали и сплавы (ГОСТ 5632—72) по химическому составу являются низкоуглеродистыми (0,10% С) и высоколегированными (Сг, Ni, Мп и др.) сталями аустенитного класса (08Х18Н10, 12Х18Н10Т, ОЗХ20Н16АГ6, ОЗХ13АГ19 и др.). Основными потребительскими свойствами этих сталей являются пластичность и вязкость, которые с понижением температуры (от 20 до — 196°С) либо не меняются, либо мало уменьшаются, т.е. не происходит резкого снижения вязкости, характерного при хладноломкости. Например, для криогенных сталей (ОН6А, ОН9А) после соответствующей термической обработки (двойная нормализация и отпуск или закалка в воде и отпуск) характерно при понижении температуры повышение предела ползучести от 400 до 820 МПа. Криогенные машиностроительные стали классифицируются по температуре эксплуатации в диапазоне от —196 до —296°С и используются для изготовления деталей криогенного оборудования.
Инструментальные стали. Инструментальные стали предназначены для изготовления режущего и измерительного инструмента, штампов холодного и горячего деформирования, а также ряда деталей точных механизмов и приборов: пружин, подшипников качения, шестерен и др. Часто из таких сталей изготавливают только рабочую (режущую) часть инструмента, а крепежные части выполняют из конструкционных сталей. Основными потребительскими требованиями к инструментальным сталям являются высокие твердость, износостойкость и прочность при хорошей (500...800°С) теплостойкости. Кроме эксплуатационных свойств для инструментальных сталей большое значение имеют технологические свойства: прокаливаемость, малые объемные изменения при закалке, обрабатываемость давлением, резанием, шлифуемость. Необходимые свойства инструментальным сталям придают карбидные фазы, так как именно их присутствие обусловливает высокие прочностные показатели и твердость. Для обеспечения необходимых свойств применяют специальное легирование и термическую обработку. Так, обеспечение теплостойкости достигается легированием сталей вольфрамом, молибденом, ванадием, а легирование хромом и марганцем повышает их прокаливаемость. Термическая обработка инструментальных сталей, как правило, включает закалку и низкий отпуск. В результате такой обработки получают твердость сталей 60...65 НКС и предел прочности при изгибе σи = 250...350 МПа. Режимы термической обработки в зависимости от химического состава сталей и требований к их твердости и прочности установлены ГОСТ 5950-73 и 19265-73. Инструментальные стали классифицируются (ГОСТ 1435—90 и 5950—73) по основному потребительскому свойству на стали высокой твердости, повышенной вязкости и теплостойкие. Стали высокой твердости и повышенной вязкости используются как нетеплостойкие. Инструментальные стали высокой твердости по химическому составу могут быть высокоуглеродистыми (0,68...1,35% С) и низколегированными (Мп, 81, Сг и др.). Структура этих сталей после термообработки — мартенсит и перлит. Температуры эксплуатации изделий из таких сталей -до 190...225°С, при этом их твердость равна 60...68 НК.С. Инструментальные стали высокой твердости (У10...У13, У10А...У13А, 13Х, ХВСГ, 9ХФ, 7ХГ2ВМ и др.) делят по прокаливаемое™ на стали небольшой, повышенной и высокой прокливаемости. Величина прокаливаемое™ определяет размер изделия. Так, инструментальные стали небольшой про-каливаемости используют для изготовления тонкого инструмента диаметром менее 12...15 мм, а стали высокой прокаливаемое™ — для массивного инструмента и инструмента сложной формы. Среднеуглеродистые (0,3..0,5% С) стачи 30, 35, ..., 55 используются после нормализации, улучшения и поверхностной закалки. После улучшения стали 40, 45, 50 имеют следующие механические свойства: ав= 600...700 МПа; а0 2 = 400...600 МПа; у = 50...40% и КШ = 0,4...0,5 МДж/м2. Прокаливав -мость этих сталей невелика. Стали 30, 35, 40, 45 используются для изготовления деталей, от которых требуется сочетание высокой прочности с вязкостью сердцевины (оси, валики, винты, шайбы, втулки, коленчатые валы и др.). Стали 60, 65, ..., 85 с высоким содержанием (0,6...0,85%) углерода обладают повышенными прочностью, износостойкостью и упругими свойствами. Их применяют после закалки и отпуска, нормализации и отпуска и поверхностной закалки. Из сталей 65, 70, 75, 80, 85 изготавливают детали, работающие в условиях трения и вибрационных нагрузок: прокатные валки (сталь 60), крановые колеса (сталь 75), диски сцепления и впускные клапаны компрессоров (сталь 85), а также пружины и рессоры (ГОСТ 14959—79). Углеродистые инструментальные стали (ГОСТ 1435—90) выпускаются ачественными (содержание серы не превышает 0,03%, фосфора -,035%) и высококачественными (серы не более 0,02% и фосфора -,03%). В конце марки высококачественных углеродистых инструмен-альных сталей ставится буква А. В углеродистых инструментальных сталях буква У в обозначении :арки означает «углеродистая сталь», а цифра показывает содержание глерода в десятых долях процента. Стали У7 (доэвтектоидная ферритно-перлитная) и У8, У8А (эвтектоид-ные) наиболее пластичные из углеродистых инструментальных сталей. Они идут на производство молотков, стамесок, долот, зубил. Из сталей У10, У11, УНА изготавливают резцы, сверла, метчики, фрезы, плитки и прочий мерительный и режущий инструмент для резания мягких материалов, а из сталей У12, У13, У13А — инструмент, работающий без ударных нагрузок (напильники, рашпили, бритвы). Стали повышенной вязкости по химическому составу являются сред-неуглеродистыми (0,60...0,74% С) и среднелегированными (Мп, 81, Сг и др.). Температура эксплуатации изделий из этих сталей, как правило, менее 200°С, а их твердость — 62 ИКС. Стали повышенной вязкости (У7, У7А, 7ХФ, 6ХС) используются для изготовления инструментов для обработки древесины (пилы, ножи и др.). Инструментальные теплостойкие стали по температуре эксплуатации в свою очередь делят на стали собственно теплостойкие (500...800°С) и полутеплостойкие (до 500°С). По химическому составу эти стали являются углеродистыми (0,22...1,65% С), высоколегированными (Мп, 81, Сг, №, Мо и др.). Теплостойкие стали высокой твердости объединяют в группу так называемых быстрорежущих сталей, маркируемых по ГОСТ 19265—73. Буква Р в марке обозначает «режущие». После буквы Р следует цифра, указывающая среднее содержание в процентах вольфрама -- главного легирующего элемента этих сталей (буква В -- его условное обозначение — пропускается); затем, как и в остальных сталях, буквами обозначаются другие легирующие элементы с цифрами, указывающими их содержание в процентах, если это содержание больше 1...2%. В состав всех быстрорежущих сталей непременно входят углерод (0,8...1,25%), хром (около 4%) и ванадий (1...2%), содержание которых в марке не указывается. Фазовый состав быстрорежущих сталей в отожженном состоянии представлен легированным ферритом и карбидами М6С, М23С6, МС, М3С. Основным карбидом является М6С. Количество карбидной фазы в стали Р18 достигает 25...30%, а в стали Р6М5 — 22%. Обработка быстрорежущих сталей включает горячую ковку литых заготовок, отжиг, закалку и многократный (чаще трехкратный) отпуск. Структура после закалки - - мартенсит + карбиды + остаточный аусте-нит. Отпуск вызывает превращение остаточного аустенита в мартенсит и дисперсионное твердение. Это сопровождается увеличением твердости до НКС 64 (вторичная твердость) за счет выделения частиц цементита. Для улучшения режущих свойств и повышения износостойкости некоторые виды инструментов подвергают низкотемпературному (540...570°С) цианированию, в результате которого на поверхности стали образуется тонкий слой высокой твердости (1000...1100 НУ). Полутеплостойкие (Х12М, 5ХНМ) и теплостойкие (Р12, Р6М5, Р18; Р12ФЗ, Р13Ф4К5, Р9М4К8; В11М7К23, 4Х5МФС, 4Х5В2ФС, 4Х4ВМФС, 45ХЗВЗМФС, 2Х8В8М2К8) стали используются для изготовления режущих инструментов (например, фрезы, сверла), штампов, пуансонов. Для инструментальных сталей при температуре эксплуатации до 650°С твердость должна быть 60...62 НКС, а для штамповых при температуре до 700°С — 45...52 НКС. Инструментальные стали, используемые для изготовления измерительного инструмента (плиток, калибров, шаблонов), помимо твердости и износостойкости должны обеспечивать постоянство размеров этих инструментов и хорошо шлифоваться. Обычно используют стали У8...У12, X, ХВГ, Х12Ф1. Необходимые требования обеспечиваются обработкой холодом до — 60°С (нередко многократной) и отпуском при 120...130°С непосредственно после закалки. Измерительные скобы, шкалы, линейки и другие плоские и длинные инструменты изготовляют из листовых сталей 15, 15Х. Для получения рабочей поверхности с высокими твердостью и износостойкостью инструменты подвергают цементации и закалке.
|
Последнее изменение этой страницы: 2019-04-10; Просмотров: 98; Нарушение авторского права страницы