Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Структурная и логическая организация БИУС



Современные автомобили, в том числе и грузовые, требуют функционирования целого комплекса систем управления, обеспечивающих эффективность эксплуатации, безопасность движения и т.д. Использование большого числа датчиков и исполнительных механизмов, распределенных по автомобилю, в совокупности с бортовыми микропроцессорами и конроллерами, объединенных в многоуровневую систему управления, способно дать решение многих проблем оптимизации и адаптации режимов функционирования важнейших агрегатов автомобиля и автомобиля в целом.

Обобщенная структурная схема информационно-управляющей системы, реализующей многоуровневое управление, приведена на рисунке 1.2.1.

Распределение функций управления по уровням (сценарий, ситуационный, локальный) возможно осуществить c помощью программы.

 

Рисунок 1.2.1 – Обобщенная структурная схема БИУС.

 

С учетом большого объема данных, передаваемых через CAN-интерфейс автомобиля в реальном времени, требований высокой надежности и безопасности функционирования очевидно необходимо использование совокупности шин данных (рисунок 1.2.2).

 

 

Рисунок 1.2.2 – Архитектура сетевого интерфейса БИУС.

 

На рисунке 1.2.2 применены следующие обозначения: ЦБУ – центральный блок управления, БАФ – блок (библиотека) автомобильных функций; Бди – ММи – мехатронные модули измерительной/диагностирующей системы; ММдв – мехатронные модули двигателя; ММд R – мехатронные модули системы диагностики; ММа N, F – модули агрегатов автомобиля; ММ п/с Р – модули подсистем автомобиля; ММт I, L – мехатронные модули тормозной системы; ММ торм сист – головной ММ тормозной системы; ММ АКПП – модуль автоматической коробки переключения передач.

Использование БИУС автомобилей позволяет решить множество дополнительных задач оптимизации режимов работы агрегатов автомобиля, обеспечить большую безопасность движения, решить задачи контроля и текущего диагностирования состояния агрегатов и систем автомобиля. Так, например, интеллектуальное управление скоростью грузового автомобиля является перспективным с точки зрения экономии топлива за счет выбора наиболее подходящего скоростного режима: как показывает анализ и моделирование отдельных режимов – экономия может достигать 5 – 7 %. Одновременно с этим решается задача существенного уменьшения психофизического утомления водителя транспортного средства.

Логически организация БИУС автомобиля может быть различной. Но, очевидно, что структура с центральной (однопроцессорной) организацией вряд ли возможна из-за большой сложности системы, многофункциональности, повышенных требований по надежности функционирования, требований к быстродействию и т.д.

Использование в БИУС иерархической организации, когда в систему входит один центральный процессор и ряд подчиненных к нему процессоров, дает целый ряд преимуществ: распараллеливание решения задач управления позволяет существенно повысить быстродействие; обеспечивают возможность управления сложными объектами (агрегатами автомобиля) в режиме реального времени; обеспечивает более высокую надежность системы.

Но вместе с этим, усложняется процедура решения задач управления: возникают сложности распределения общей задачи на ряд отдельных подзадач, сложности увязки этих подзадач между собой; сложности создания алгоритмического и программного обеспечения такой иерархической системы управления.

Развитие компьютерных и сетевых технологий позволяет в настоящее время перейти к созданию децентрализованных распределенных систем компьютерного управления, которые представляю собой множество полностью равноправных процессоров, объединенных в единую систему управления с помощью сетевого канала связи.

Такая организация БИУС имеет ряд преимуществ: отсутствует центральный процессор, выход которого из строя приводит к отказу всей информационно-управляющей системы; отказ любого процессора не приводит к катастрофическим последствиям – задачи, решаемые отказавшим процессором, могут быть перераспределены/размещены на работоспособных процессорах. Таким образом, помимо параллельности решения задачи управления, такая БИУС будет обладать высокой надежностью. Обмен информацией между отдельными подсистемами БИУС, датчиками и исполнительными механизмами может осуществляться по стандартным сетевым протоколам обмена [1].

 

 

Структурная схема БИУС

В результате проведенного анализа структурно-алгоритмического построения систем диагностирования транспортных средств предлагается аппаратная реализация автоматизированной диагностической системы в виде информационно-управляющей системы транспортного средства (ТС).

Для оценки состояния и поведения ТС используется информация, получаемая со следующих датчиков, расположенных на машине:

- датчики давления измеряют давление масла в КПП, ДВС, гидросистеме, пневмосистеме;

- датчики температуры для измерения температуры охлаждающей жидкости ДВС, масла в ДВС, охлаждающей жидкости в компрессоре, масла в гидросистеме.

Перечисленные датчики являются аналоговыми и имеют различные диапазоны измерения. Многие датчики имеют нелинейную характеристику. Используются также дискретные датчики, работающие в качестве сигнализаторов, например, сигнализатор критической температуры охлаждающей жидкости, аварийного давления масла и другие, концевые выключатели главного фрикциона, горного тормоза, вентилятора. Еще один тип датчиков – импульсные датчики, формирующие последовательность импульсов, например для контроля пройденного пути.

В качестве информационно-управляющей системы используется бортовой компьютер (вычислитель), выполняющий сбор и обработку информации с датчиков, а также формирующий информационные сообщения и управляющие воздействия на исполнительные механизмы. Для подключения датчиков к вычислителю необходимо выполнить обработку сигналов. К обработке сигналов относятся нормирование сигнала (усиление), т.е. приведение его к определенному значению, фильтрация, линеаризация, аналого-цифровое преобразование и другие виды обработки. 

Структурная схема информационно-управляющей системы приведена на рисунке 1.3.1.

Рисунок 1.3.1 – Информационно-управляющая система

Приведенная система обладает существенным недостатком. Вычислитель оказывается слишком перегруженным, т.к. очень много времени затрачивается на формирование информационных сообщений, что может привести к потере информации с датчиков в критических ситуациях. Поэтому предлагается разделить функции сбора и обработки информации с датчиков и формирования информационных сообщений на два вычислителя.

Структурная схема информационно-управляющей системы, содержащая систему сбора и обработки информации и систему отображения информации, приведена на рисунке 1.3.2.

Рисунок  1.3.2 – Информационно-управляющая система с двумя вычислителями

 

Такой подход к построению информационно-управляющей системы также имеет ряд недостатков, относящихся к топологии системы.

Датчики расположены на машине в различных точках. Это приводит, во-первых, к сложной организации разводки кабельного оборудования. Многие датчики имеют слабый сигнал, и при прокладке кабеля на большое расстояние происходит ослабление сигнала, засорение его помехами, наводками. Кроме того, система имеет низкую надежность. При обрыве кабеля информация с датчика полностью теряется, или, что еще хуже, вычислитель может понять отсутствующий сигнал за исправный, что приводит к аварийным ситуациям.

Для решения этой задачи предлагается иной подход к построению информационно-управляющей системы. Каждый датчик выполняется в виде законченного мехатронного модуля, содержащего непосредственно первичный преобразователь (датчик), устройство преобразования сигнала и вычислитель. В классе мехатронных устройств – так называемые МЕМCы.  МЭМС –  микроэлектромеханические системы — устройства, объединяющие в себе микроэлектронные и микромеханические компоненты. Для управления исполнительными устройствами также создается модуль, в состав которого входит вычислитель, усилитель-преобразователь и исполнительный механизм.

Структурные схемы модулей показаны на рисунке 1.3.3. Каждый модуль выполняется в виде специализированного контроллера, содержащего вычислительное устройство и преобразователь.

Рисунок 1.3.3 – Модули преобразователей

Так как для обработки информации с дискретных датчиков не требуется сложных преобразований, то их можно подключить к модулю аналогового или импульсного датчика, который физически расположен ближе к дискретному датчику. В этом случае модули необходимо снабдить несколькими входами дискретного ввода.

Для связи модулей преобразователей с главным бортовым компьютером каждый модуль должен иметь последовательный интерфейс связи, например RS-485, USB или CAN. CAN-интерфейс постепенно становится стандартом для распределенных систем управления на транспорте, в автомобильной технике и робототехнике. Можно также использовать интерфейс SERCOS, разработанный для цифровых следящих приводов и представляющий собой локальную кольцевую оптоволоконную сеть.

Структурная схема информационно-управляющей системы, построенной с использованием автономных модулей, приведена на рис.1.3.4. Все модули объединены в бортовую двухпроводную или однопроводную сеть. Дублирование линий связи позволяет существенно повысить надежность такой системы.

На первый взгляд такой подход приведет к существенному удорожанию информационно-управляющей системы. Однако это не так. Каждый вычислитель предназначен для выполнения узкоспециализированных задач и выполняется на недорогих контроллерах.

Рисунок  1.3.4 – Информационно-управляющая система на автономных модулях

 

Еще один подход к построению модуля это использование программируемых логических интегральных схем – ПЛИС.

 ПЛИС представляет собой матрицу логических вентилей, логика работы и переключения которых может быть задана программным образом. Популярность данной технологии обусловлена, прежде всего, малыми размерами устройств, скоростью их работы, малым энергопотреблением и гибкостью по отношению к обновлению логики работы ядра ПЛИС.

ПЛИС представляет собой микросхему, содержащую миллионы несоединённых логических вентилей И/ИЛИ, которые с помощью специальных программных средств могут быть настроены и электрически сконфигурированы для выполнения специфических аппаратных функций.

Обычно программирование ПЛИС микросхем требует от пользователя знания достаточно сложных языков, таких, как VHDL. Именно сложность программирования ПЛИС привела к тому, что многие инженеры отказываются от использования старой технологии в приложениях измерений, автоматизации, управления и сбора данных. Современная технология реконфигурируемого ввода/вывода позволяет существенно сократить время, затрачиваемое на обучение инженеров программированию ПЛИС.

Компания National Instruments предлагает технологию реконфигурируемого ввода/вывода (reconfigurable input/output) RIO и представляет пользователям возможность графического моделирования и конфигурирования ПЛИС в приложениях измерений и автоматизации. Таким образом, интеграция технологии реконфигурированного ввода/вывода переводит процесс создания приборов на совершенно другой уровень, предлагающий разработчикам более гибкие инструменты для удовлетворения требований заказчика.

Устройства на базе ПЛИС обладают реконфигурируемой цифровой архитектурой, включающей в себя матрицу конфигурируемых логических блоков, окруженных периферийными блоками ввода/вывода. В пределах матрицы ПЛИС возможна произвольная маршрутизация сигналов посредством управления программируемыми переключателями и коммутирующими линиями. Цепи ПЛИС представляют собой реконфигурируемую счетную машину, осуществляющую параллельную обработку данных и исполняющую приложения на аппаратном уровне микросхемы. Можно разработать на базе ПЛИС свои собственные схемы управления и сбора данных с тактированием и синхронизацией процессов с точностью до 25 нс. Благодаря возможности параллельной обработки данных, заложенной в ПЛИС, добавление новых вычислений в программу, исполняемую на микросхеме, не приводит к уменьшению скорости исполнения приложений.

Реконфигурируемая ПЛИС в сочетании с процессором реального времени, а вместе это Compact RIO, позволяют создавать автономные встраиваемые и распределенные приложения, а также промышленные модули ввода/вывода со встроенным согласованием сигналов, возможностью прямого подключения датчиков и поддержкой горячего подключения. ПЛИС, как ядро системы, обладает встроенными механизмами передачи данных во встроенный процессор реального времени для их последующего анализа, обработки и сохранения, а также для связи с внешними устройствами. При этом каждый из модулей ввода/вывода содержит в себе встроенные разъемы, систему согласования сигналов, цепи преобразования (такие как ЦАП и АЦП), а также изоляционные барьеры. Поддержка расширенного диапазона напряжений и различных промышленных типов сигналов позволяет напрямую подключить к модулям датчики и управляемые устройства.

Благодаря своей невысокой стоимости, надежности и пригодности для использования в широком классе встраиваемых контрольно-измерительных приложений, Compact RIO может применяться практически во всех отраслях промышленности. Так, на базе систем Compact RIO решаются такие задачи, как групповое управление, дискретное управление, управление движением, бортовые измерения, мониторинг состояния машин, быстрое прототипирование управляющих систем, промышленные системы управления и сбора данных, распределенные системы управления и сбора данных, мобильный/портативный анализ шумов, вибраций и т.д.

В частности, ориентированная на создание пользовательских приложений технология RIO позволяет, например, создать аппаратную систему управления шаговым или серво приводом, используя ПЛИС для расшифровки сигналов с тахометра или с квадратурного энкодера с целью проведения измерений координаты и скорости.

Появление устройств с поддержкой реконфигурируемого ввода/вывода существенно расширяет возможности технологии приборов. Для программирования устройств с технологией RIO применяется программная среда LabVIEW, которая позволяет разрабатывать аппаратную часть контрольно-измерительных систем, идеально настроенных для решения специфических задач.

К информационным и вычислительным ресурсам системы диагностики и контроля предъявляется ряд требований. Основной задачей всех измерительных систем является измерение и/или генерация реальных физических сигналов. В процессе сбора данных физические величины, такие, как напряжение, ток, давление и температура преобразуют в цифровой формат и вводят их в компьютер. Распространенные методы сбора данных реализуются с помощью встраиваемых в компьютер устройств и автономных измерительных приборов, приборов, поддерживающих интерфейс GPIB, систем стандарта PXI (расширение PCI для измерительной техники) и приборов с портом RS-232.

GPIB (General Purpose Interface Bus) - стандартная шина, предназначенная для управления электронными измерительными приборами с помощью компьютера. Ее также называют IEEE 488, поскольку ее характеристики определяются стандартами ANSI/IEEE 488-1978, 488.1-1987, 488.2-1992. Максимальное расстояние между любыми двумя приборами - 4 м, среднее расстояние между приборами по всей шине - 2 м. Максимальная (общая) длина кабеля - 20 м. К каждой шине подключается максимум 15 приборов, причем не менее двух третей из них должны быть включены.

Прежде чем компьютерная измерительная система сможет измерить некоторую физическую величину, например, температуру, физический сигнал с помощью датчика или измерительного преобразователя должен быть преобразован в электрический - ток или напряжение. Под преобразованием сигналов следует понимать процесс предварительной обработки сигналов с целью улучшения точности измерений, качества изоляции цепей (развязки), фильтрации и т.д.

Чтобы измерять сигналы с датчиков, необходимо преобразовать их в форму, которую может воспринять устройство аналого-цифрового преобразования. Например, у большинства термопар выходное напряжение очень мало и соизмеримо с шумом. Следовательно, перед оцифровкой такого сигнала его необходимо усилить. Усиление (нормирование) является одной из форм преобразования. К другим типовым разновидностям преобразования сигналов относятся линеаризация, возбуждение датчика, развязка.

На рисунке  1.3.5 показаны некоторые распространенные типы датчиков и сигналов и требуемые для них виды преобразования.

Таким образом, наиболее целесообразно строить информационно-управляющую систему на основе автономных модулей. В качестве измерительных устройств текущих параметров следует применять интеллектуальные датчики (МЭМСы).

 

 

Рисунок 1.3.5 – Типы датчиков и сигналов и виды преобразования

 

Бортовая сеть должна быть в варианте одно или двухпроводной или на оптоволоконной линии передачи. Учитывая специфику транспортного средства в части характера выполняемых работ и безопасности экипажа, линия связи должна быть резервирована (в простейшем варианте дублирование по бортам)[2].

 


Поделиться:



Последнее изменение этой страницы: 2019-04-19; Просмотров: 301; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.025 с.)
Главная | Случайная страница | Обратная связь