Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Уравнения Лагранжа и Клеро.
( Алекси Клод Клеро (1713 – 1765) французский математик ин. поч. член Петерб. АН )
Определение. Уравнением Лагранжа называется дифференциальное уравнение, линейное относительно х и у, коэффициенты которого являются функциями от y ’. Для нахождения общего решение применяется подстановка p = y ’. Дифференцируя это уравнение,c учетом того, что , получаем: Если решение этого (линейного относительно х) уравнения есть то общее решение уравнения Лагранжа может быть записано в виде:
Определение. Уравнением Клеро называется уравнение первой степени (т.е. линейное) относительно функции и аргумента вида: Вообще говоря, уравнение Клеро является частным случаем уравнения Лагранжа. С учетом замены , уравнение принимает вид:
Это уравнение имеет два возможных решения: или В первом случае:
Видно, что общий интеграл уравнения Клеро представляет собой семейство прямых линий. Во втором случае решение в параметрической форме выражается системой уравнений:
Исключая параметр р, получаем второе решение F(x, y) = 0. Это решение не содержит произвольной постоянной и не получено из общего решения, следовательно, не является частным решением. Это решение будет являться особым интегралом. ( См. Особое решение. ) Далее рассмотрим примеры решения различных типов дифференциальных уравнений первого порядка.
Пример. Решить уравнение с заданными начальными условиями. Это линейное неоднородное дифференциальное уравнение первого порядка. Решим соответствующее ему однородное уравнение. Для неоднородного уравнения общее решение имеет вид: Дифференцируя, получаем: Для нахождения функции С(х) подставляем полученное значение в исходное дифференциальное уравнение:
Итого, общее решение:
C учетом начального условия определяем постоянный коэффициент C. Окончательно получаем: Для проверки подставим полученный результат в исходное дифференциальное уравнение: верно Ниже показан график интегральной кривой уравнения.
Пример. Найти общий интеграл уравнения .
Это уравнение с разделяющимися переменными. Общий интеграл имеет вид:
Построим интегральные кривые дифференциального уравнения при различных значениях С.
С = - 0,5 С = -0,02 С = -1 С = -2
С = 0,02 С = 0,5 С = 1 С = 2
Пример. Найти решение дифференциального уравнения, удовлетворяющее заданным начальным условиям.
Это уравнение с разделяющимися переменными. Общее решение имеет вид:
Найдем частное решение при заданном начальном условии у(0) = 0.
Окончательно получаем:
Пример. Решить предыдущий пример другим способом.
Действительно, уравнение может быть рассмотрено как линейное неоднородное дифференциальное уравнение.
Решим соответствующее ему линейное однородное уравнение.
Решение неоднородного уравнения будет иметь вид: Тогда Подставляя в исходное уравнение, получаем:
Итого С учетом начального условия у(0) = 0 получаем
Как видно результаты, полученные при решении данного дифференциального уравнения различными способами, совпадают. При решении дифференциальных уравнений бывает возможно выбирать метод решения, исходя из сложности преобразований.
Пример. Решить уравнение с начальным условием у(0) = 0.
Это линейное неоднородное уравнение. Решим соответствующее ему однородное уравнение.
Для линейного неоднородного уравнения общее решение будет иметь вид: Для определения функции С(х) найдем производную функции у и подставим ее в исходное дифференциальное уравнение. Итого
Проверим полученное общее решение подстановкой в исходное дифференциальное уравнение. (верно)
Найдем частное решение при у(0) = 0. Окончательно
Пример. Найти решение дифференциального уравнения с начальным условием у(1) = 1.
Это уравнение может быть преобразовано и представлено как уравнение с разделенными переменными.
С учетом начального условия:
Окончательно
Пример. Решить дифференциальное уравнение с начальным условием у(1) = 0.
Это линейное неоднородное уравнение. Решим соответствующее ему однородное уравнение.
Решение неоднородного уравнения будет иметь вид: Подставим в исходное уравнение: Общее решение будет иметь вид:
C учетом начального условия у(1) = 0: Частное решение: Пример. Найти решение дифференциального уравнения с начальным условием у(1) = е.
Это уравнение может быть приведено к виду уравнения с разделяющимися переменными с помощью замены переменных. Обозначим: Уравнение принимает вид:
Получили уравнение с разделяющимися переменными.
Сделаем обратную замену: Общее решение:
C учетом начального условия у(1) = е: Частное решение:
Второй способ решения.
Получили линейное неоднородное дифференциальное уравнение. Соответствующее однородное:
Решение исходного уравнения ищем в виде: Тогда Подставим полученные результаты в исходное уравнение:
Получаем общее решение:
Пример. Решить дифференциальное уравнение с начальным условием у(1)=0.
В этом уравнении также удобно применить замену переменных. Уравнение принимает вид: Делаем обратную подстановку: Общее решение:
C учетом начального условия у(1) = 0: Частное решение:
Второй способ решения. Замена переменной: Общее решение:
|
Последнее изменение этой страницы: 2019-04-19; Просмотров: 201; Нарушение авторского права страницы