Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Линии давлений и устойчивость стен
Внушает трепет и благоговенье Весь облик этой каменной громады. Уходят в небо древние колонны, Главами мраморными подпирая Изогнутый дугою тяжкий свод. Недвижно все, покоем дышит камень И, ужасая, привлекает взор.
Утренний мост Уильям Конгрив
Во времена королевы Анны культурная жизнь Англии не могла быть особенноразрозненной и можно быть почти уверенным в том, что Конгрив (1670-1729)имел беседы и делил застолье с Ванбруфом, автором многочисленных пьес исоздателем Бленхеймского дворца, а также с самим Кристофером Реном. Дляэтих людей в общих чертах было совершенно ясно, что устойчивость зданийопределяет не столько прочность камня и скрепляющего "раствора", сколькораспределение их веса. Однако одно дело понимать это и совсем другое - конкретно представлятьсебе все в деталях и уметь определить заранее, будет ли здание безопаснымили нет. Чтобы достичь научного понимания того, как ведет себя каменнаякладка, ее необходимо рассматривать как упругий материал, то есть следуетучесть то обстоятельство, что материал камня деформируется под действиемнагрузки и что он подчиняется закону Гука. Полезно также, хотя это и неабсолютно необходимо, использовать понятия напряжения и деформации. На первый взгляд все же, конечно, кажется невероятным, что твердый кирпичи камень могут деформироваться в сколько-нибудь заметной степени под действиемнагрузки, создаваемой зданием. И в самом деле, еще столетие после Гукак этой мысли не могли привыкнуть даже строители, архитекторы и инженеры.Они упорно игнорировали закон Гука и считали каменную кладку абсолютножесткой. В результате их расчеты оказывались неверными и здания иногдарушились. Однако в действительности модуль Юнга для кирпича и камня не очень велик (вэтом можно убедиться, посмотрев на изогнутые колонны собора в Солсбери на рис.4), а потому упругие перемещения каменной кладки отнюдь не так малы, как можнобыло бы предполагать. Даже стены обычного небольшого дома сжаты в вертикальномнаправлении своим собственным весом примерно на миллиметр. В больших зданияхэти перемещения, естественно, значительно больше. А когда вам кажется, что домсотрясается под порывами сильного ветра, это не так далеко от истины. Верхушканебоскреба Эмпайр стэйт билдинг раскачивается при сильном ветре более чем на0,5 м[62]. Современный расчет каменной кладки основан на простом законе Гука, атакже на следующих четырех допущениях, которые оказываются справедливымина практике: 1) сжимающие напряжения столь малы, что материал не может разрушатьсяза счет сжатия (мы уже обсуждали этот вопрос); 2) благодаря использованию строительного раствора или цемента соединениявыполнены достаточно тщательно, так что силы сжатия действуют по всей площадисоединения, а не в нескольких выступающих точках; 3) трение в соединениях столь велико, что не может произойти разрушенияконструкции вследствие взаимного проскальзывания кирпичей или камней (насамом деле никаких проскальзываний до разрушения конструкции не происходит); 4) соединения не обладают сколько-нибудь заметной прочностью на растяжение;даже если случайным образом раствор обладает некоторой прочностью на разрыв,на нее нельзя полагаться и ею следует пренебречь. Таким образом, назначение строительного раствора состоит не в том, чтобы"склеивать" кирпичи или камни, а в том, чтобы сжимающие нагрузки передавалисьчерез соединение более равномерно. Насколько мне известно. Юнг был первым, кто стал учитывать упругие деформациикаменной кладки. Он рассмотрел, что происходит в прямоугольном блоке каменнойкладки, скажем в участке стены, когда он подвергается действию вертикальнойсжимающей нагрузки Р. Мы приведем его рассуждения в упрощенной форме, переведяих для этого на язык напряжений и деформаций, которого во времена Юнга,конечно, не существовало. До тех пор пока нагрузка P действует вертикально внизв плоскости симметрии, то есть посредине стены, кладка будет сжата равномернои, согласно Гуку, соответствующее распределение сжимающих напряжений потолщине стены также будет равномерным (рис. 58).
Рис. 58. Нагрузка P действует в плоскости симметрии стены. Рис. 59. Нагрузка P действует в пределах "средней трети" стены.
Рис. 60. Нагрузка P действует на краю "средней трети" соединения AB . Рис. 61. Нагрузка P действует вне "средней трети" соединения AB . Предположим теперь, что вертикальная нагрузка P немногосместилась в сторону и действует не точно в плоскости симметрии стены.В этом случае сжимающее напряжение не будет постоянным вдоль ее сечения:для того чтобы в точности уравновесить действующую нагрузку, оно должнобыть с одной стороны больше, чем с другой. Юнг показал, что если материалподчиняется закону Гука, то напряжения по толщине стены будут изменятьсялинейно и распределение напряжений будет выглядеть так, как показано нарис. 59. Пока что соединению, которое мы видим на рис. 59, ничто не угрожает:по всему сечению АВ действуют только сжимающие напряжения.Однако если приложение нагрузки сместится еще дальше от середины стены- на границу так называемой "средней трети" стены, то возникнет ситуация,изображенная на рис. 60, в которой распределение напряженийимеет треугольную форму и сжимающее напряжение на одном из краев соединенияобращается в нуль.
Рис. 62. Вот что происходит, если возникает ситуация, изображенная на рис.61. В соединении возникает трещина ВС , и вся нагрузка теперь распределенапо площади, соответствующей отрезку АС , - эффективная толщина стеныуменьшается. Рис. 63. Если линия действия нагрузки проходит за пределами отрезка АВ ,то стена будет поворачиваться вокруг точки A ,- опрокинется и упадет. Само по себе это пока еще не опасно, но для вдумчивого человека вполнеочевидно, что при этом что-то готово вот-вот произойти. И действительно,если нагрузка сместится еще немного к краю, "что-то" и в самом деле произойдет- возникнет ситуация, изображенная на рис. 61. Сжимающее напряжение вблизи одной из поверхностей стены теперь сменилосьна растягивающее. Здесь уже нельзя быть уверенным в том, что раствор сможетвыдержать растягивающее напряжение. Обычно он и в самом деле не выдерживаети происходит то, чего и следовало ожидать, - в соединении возникает трещина.Конечно, если стена трескается, это плохо и этого лучше не допускать, однакотакая трещина еще не означает, что стена непременно и без промедления рухнет.Весьма вероятно, что края трещины несколько разойдутся, но стена останетсястоять, покоясь на той части соединения, где контакт не нарушен (рис. 62). Но все это не сулит спокойной жизни, и наступит день, когда линия действиясилы окажется за пределами стены, и нетрудно догадаться, что произойдет.В стене не может возникнуть необходимых растягивающих напряжений, ее частьначнет свисать над основанием, и тогда стена опрокинется и упадет (рис.63). В 1802 г., когда Юнг пришел к этим заключениям, он был двадцатидевятилетнимчеловеком, начинающим приобретать известность и только что получившим кафедрунатуральной философии в Королевском институте в Лондоне. Его коллегой и вопределенном смысле соперником был Гемфри Дэви[63], который втом же году, в невероятно молодом возрасте - ему было 24 года, - стал там жепрофессором химии. Как и сегодня, в те времена существовала традиция, согласно которойпрофессора Королевского института читали публичные лекции. Правда, в товремя эти лекции по своему характеру были близки к сегодняшним выступлениямпо телевидению и для института служили источником денежных средств, а такжесоздавали ему паблисити. Юнг отнесся к своей просветительской миссии весьма серьезно и, полныйэнтузиазма, затеял серию лекций об упругом поведении разного рода конструкций,в том числе стен и арок, которым он посвятил свои последние исследования. Публика на этих собраниях на Албемарл-стрит была фешенебельной и, какговорят, состояла главным образом из "глупых женщин и философствующихдилетантов" . Юнг отнюдь не пренебрег женской частью аудитории, заметивв своей вводной лекции:
"Значительную часть моей аудитории - и я горю желанием донестидо нее эти лекции - составляют лица того пола, который, согласно традициямцивилизованного общества, в известной степени избавлен от тяжелых обязанностей,поглощающих время и внимание лиц противоположного пола. Те многие часыдосуга, которыми располагают женщины высших слоев общества, можно посвятитьсовершенствованию ума и приобретению знаний, и это несомненно принеслобы большее удовлетворение, чем развлечения, придуманные лишь для того,чтобы немного скрасить однообразие ничем не занятого времени".
Однако фортуна не всегда благосклонна к сеятелям знаний, и можно подозревать,что некоторые из представительниц прекрасного пола все же сбежали с этихлекций, отдав предпочтение однообразию "ничем не занятого времени" .Так или иначе, но Дэви, демонстрировавший на своих лекциях необыкновеннозахватывающие опыты с "новой электрической жидкостью" и яркие химическиеэксперименты, был, как мы бы сейчас сказали, прямо-таки создан для экрана.Этот энергичный молодой человек имел к тому же весьма привлекательную внешность,так что молодые дамы стекались на его лекции по причинам, которые нельзяназвать вполне академическими, Одна из них, говорят, заметила, что "этиглаза созданы не только для того, чтобы сосредоточенно разглядывать пробирки" .В итоге кассовый успех лекций Дэви превзошел все ожидания, и администрациярезюмировала: "Хотя д-р Юнг, чьи глубокие познания в предмете, которыйон предложил своим слушателям, не вызывают сомнений, читал свои лекциитой же аудитории, что и Дэви, число его слушателей уменьшалось раз от раза,чего нельзя объяснить ничем иным, кроме слишком сухой и назидательной манерыизложения" . Провал такого рода не много бы значил, вызови работа Юнга интерес и поддержкуинженеров-практиков. Однако вождем и даже кумиром тогдашних инженеров был ТомасТелфорд (1757-1834), взгляды которого, как мы уже упоминали, отличалисьпрагматичностью и отвергали теорию. Все это способствовало тому, чтобы Юнгпочти немедленно отказался от кафедры и вернулся к медицинскойпрактике[64]. Развитие теории упругости на много лет переместилось во Францию, гдекак раз в это время Наполеон активно поощрял исследования в области конструкций. Учение об упругом сжатии, "средней трети" и неустойчивости, котороевызывало такую скуку у фешенебельных дам на лекциях Юнга, в действительностисодержит практически все, что нужно знать о поведении стыков в каменнойкладке, при условии, что нам известна также линия действия силы веса. Другимисловами, мы должны знать, на каком расстоянии от серединной плоскости стенына самом деле действует нагрузка.
Рис. 64. В простейшем случае, когда имеется симметрия, "линия давлений",проходит через середину стены. Здесь как раз уместно ввести понятие "линии давлений", которая определяетсякак линия, проходящая по стене здания от ее верхней точки до основанияи пересекающая все стыки в тех точках, где приложена равнодействующая вертикальногодавления. Линия давлений - это французское изобретение, и, по-видимому,первым ее рассматривал Кулон (1736-1806). Для стены, колонны или опоры простых симметричных форм, таких, как показаны нарис. 64, линия давлений проходит, очевидно, через середину, и здесь нет никакихтрудностей. Однако если речь идет о сколько-нибудь более сложном сооружении, тотогда скорее всего имеется хотя бы одна наклонная сила, возникающая из-забокового давления крыши, арки, сводов или других конструктивных элементов. Втаких случаях линия давлений уже не проходит точно через середину стены, асмещается на одну сторону и часто принимает искривленную форму, как показано нарис. 65[65].
Рис. 65. В результате действия наклонной нагрузки линия давлений отклоняетсяот плоскости симметрии стены. Рис. 66. Действие на стену дополнительной вертикальной нагрузки уменьшаетотклонение линии давлений от середины стены. Если, проводя линию давлений, мы обнаружим, что имеется опасность того,что она в какой-либо точке достигнет поверхности стены, то следует призадуматься,и крепко, поскольку у сооружения, спроектированного таким образом, великишансы рухнуть. Один из способов исправить положение (и, вероятно, это один из наиболееэффективных способов) состоит в том, чтобы на верхнюю часть стены добавитьдополнительный вес. Тогда дело обернется таким образом, как это показанона рис. 66. В противоположность тому, что можно было бы предположить, этотдополнительный вес способствует большей, а не меньшей, устойчивости стеныи возвращает "заблудшую" линию давлений более или менее туда, где ей следуетнаходиться. Требуемый дополнительный вес можно создать, просто надстроив стену больше,чем в действительности необходимо; годятся также такие вещи, как тяжелыебаллюстрады и парапеты. Всегда могут выручить и поставленные в ряд статуи(рис. 67), если, конечно, это совместимо с назначением здания и позволяютсредства! С конструкционной точки зрения бывает обоснованным использованиебашенок и статуй в готических церквях и соборах. Они возвышаются там словнонасмешка над приверженцами функциональности и унылыми ревнителями "эффективности". Обычно считается абсолютно необходимым, чтобы линия давлений[66] проходила в пределах "средней трети" стены, посколькуиначе при появлении трещины она может обвалиться.
Рис. 67. Требуемую дополнительную вертикальную нагрузку могут создаватьбашенки, статуи и т. п. Такой осторожный подход правилен, он служит безопасности, и его необходимопридерживаться, но я боюсь, что в наш век вседозволенности это делается редко.Посмотрите на стену современного жилого дома или нового учебного заведения, ивы увидите массу трещин, а там, где трещины, непременно действовали когда-торастягивающие напряжения. Правда, хотя эти трещины вредят штукатурке ивнутренней отделке здания[67], на деле ониредко представляют какую-либо опасность для несущей конструкции. Основнымусловием надежности каменной кладки является то, чтобы линия давлений нигде иникогда не подходила к поверхности стены, или колонны.
Плотины
Подобно стенам, каменные плотины обычно разрушаются не из-за недостаткапрочности, а из-за недостатка устойчивости - они, как и стены, могут опрокидываться.Боковое давление на плотину со стороны запруженной воды, как правило, сравнимос весом каменной кладки плотины. Поэтому положения активной линии давлениймогут резко меняться в зависимости от уровня запруженной воды. Для плотинв отличие от обычных зданий недопустимы никакие вольности в обращении справилом "средней трети". Их каменная кладка ни в коем случае не должнасодержать трещин, особенно со стороны, обращенной к запруживаемой воде.Присутствие трещины позволило бы воде под давлением войти внутрь конструкции,что повлекло бы за собой два нежелательных последствия. Во-первых, водаповреждала бы каменную кладку. В больших плотинах для предотвращения всякогопросачивания воды в тело плотин обычно предусматривается специальный дренаж.Во-вторых, давление воды внутри трещины создавало бы направленную вверхсилу (ее величина на глубине 30 м составляет около 0,5 МН/м2), котораяв критической ситуации опрокидывает дамбу. Так, разрушение британской авиацией плотин Мопе и Эдер в 1943 г. происходилов две стадии, разделенные коротким промежутком времени. Вначале взорвалисьбомбы, сброшенные Барнсом Уоллисом возле плотины со стороны верхнего бьефа(прежде чем взорваться, они затонули). Взрывы бомб образовали в теле плотиныглубокие трещины, а уже опрокидывание плотин произошло через некоторыйпромежуток времени и было вызвано проникновением в эти трещины воды, давлениекоторой было достаточно велико. Те, кто читал отчет об этих операциях,помнят, что между взрывами бомб и видимым разрушением плотины была заметнаяпауза. Разрушения эти нанесли огромный ущерб районам Рура. Разрушение плотины в мирное время - страшный сон для инженера. Дажеесли плотина сделана из неармированного бетона, а не из камня, было бынеразумным положиться на сопротивление материала плотины растягивающимнагрузкам. Поэтому во всех плотинах, построенных из неармированных материалов,линия давлений, смещаясь в сторону верхнего бьефа при незаполненном водохранилищеи в противоположную сторону, когда водохранилище заполнено до предела,не должна выходить из "средней трети", и не лишне при этом иметь еще некоторыйзапас. Чтобы удовлетворить этим требованиям, обычно строят суживающиесякверху плотины асимметричной формы. Эта форма хорошо известна, вы видитеее на рис. 68.
Рис. 68. Каменная плотина без армирования.
Рис. 69. Армированная плотина. Однако стоимость удержания воды с помощью плотины весьма высока, и инженерыпостоянно ищут более дешевые способы сооружения плотин. Заметно снизитьобщий вес плотины и стоимость цемента позволяет применение бетона, армированногостальными прутьями, в особенности предварительно натянутыми, Однако еслиармирующие прутья не закреплены в твердой породе под основанием плотины,имеется реальная опасность, что плотина будет опрокинута как целое, вместес арматурой и всем прочим. Одно из возможных конструктивных решений показано на рис. 69. Здесьпростые вертикальные стальные стягивающие стержни закреплены в твердойпороде, лежащей в основании плотины, и проходят через бетон до ее верха,где они натягиваются с помощью устройства типа домкрата. Очевидно, чтоэти прутья работают так же, как и фигуры святых и башенки на кафедральныхсоборах. Любую обычную тяжелую каменную кладку также можно рассматриватькак "предварительно напряженную" ее собственным весом. Тяжелые статуи,поставленные в ряд по верхней кромке плотины, несомненно были бы эффективныи, возможно, не так уж плохо и выглядели бы, но, боюсь, они оказались быкуда как дороже стальных стержней.
Арки
Хотя арки не столь стары, как каменная кладка, тем не менее они тожеведут свое начало из глубокой древности. Имеются свидетельства, восходящиепримерно к 3600 г. до н.э., о существовании вполне совершенных арок изкирпича как в Египте, так и в Месопотамии. Арки из камня, по-видимому,имели отдельную и, возможно. независимую линию развития, возникающую изидеи об устройстве выступов; такие выступы, образованные выдававшимисявсе дальше последовательными рядами каменной кладки, строились навстречудруг другу, пока не сходились. Своды помещений (рис. 70), над которымивозвышаются крепостные стены микенского города Тиринфа, - уже тогда, когдаими восхищался Гомер, они были старыми, - построены именно таким образом.Боковые ворота в этих громадных стенах (рис. 71) можно рассматривать какпример дальнейшего развития техники устройства выступов. Все это, вероятно,было построено ранее 1800 г. до н. э.
Рис. 70. Своды, образуемые посредством выступовкаменной кладки. Тиринф, приблизительно 1800 г. до н. э.
Рис. 71. Боковые ворота в крепостных стенах Тиринфа. Однако способ устройства арок с помощью серии выступов, подобный примененномупри строительстве ворот в Тиринфе, довольнопримитивен[68]. Арки скоро развились в конструкцию, вкоторой кирпичи или камни имеют слегка клинообразную форму, такие камни носятназвание клинчатых. Детали обычной арки показаны на рис. 72. Клинчатый камень на вершине, или шелыге, арки или свода называется замковымкамнем, и иногда его делают большим, чем остальные. Хотя поэты, политикии представители гуманитарных наук склонны приписывать замковому камню особыесвойства, употребляя его название в переносном смысле, в действительностизамковый камень, если и имеет какие-либо отличия от других камней, то толькодекоративного характера.
Рис. 72. Элементы конструкции арки. Назначение арочной конструкции состоит в том, чтобы выдерживать нагрузки,которые действуют на нее сверху вниз, преобразуя их в боковое давление,действующее вдоль арочного кольца и сжимающее по бокам клинчатые камни.Последние, конечно, в свою очередь давят на пяту арки. Как все это происходит,можно понять из рис. 73. Кольцо арки, образованное кладкой из клинчатых камней, очень похожена искривленную стену, и для нее также можно построить линию давлений,указывающую линии действия равнодействующих сил, как это делалось вышедля обычных стен. В данном случае линия давлений должна искривляться, болееили менее повторяя форму кольца арки. О линиях давлений в арках мы поговоримв следующей главе, пока же отметим сам факт существования линии давлений.Как и в случае стены, здесь также можно считать, что клинчатые камни немогут проскальзывать относительно друг друга и что соединения не способнывыдерживать растягивающих напряжений.
Рис. 73. Распределение нагрузок в арке. Арка принимает на себя вертикальныенагрузки и преобразует их в боковые давления, которые действуют вдоль арочногокольца. Им оказывает противодействие пята арки. Стыки между клинчатыми камнями ведут себя примерно так же, как и соединенияв обычной кладке. Если линия давлений паче чаяния выйдет за пределы "среднейтрети", то появится трещина. Если же линия давлений сдвинется к поверхностикольца арки, то образуется "шарнир". Но что радикально отличает арку оттривиальной стены, так это то, что, в то время как в подобной ситуациистена бы рухнула, с аркой этого не происходит. Из рис. 74 видно, что варке может возникнуть до трех шарниров, и при этом не происходит ничегострашного. В действительности в конструкциях многих современных мостовпредусмотрены три шарнира, которые воспринимают тепловые расширения. Чтобы мост обвалился, ему требуется четыре шарнира, тогда арка оказываетсяцепью из трех шарнирно связанных звеньев - механизмом, имеющим ту степеньсвободы, которая позволяет ему "складываться", то есть разрушаться (рис.75). Кстати, поэтому, если вы хотите разрушить мост - из добрых или злыхпобуждений, - то взрывчатку лучше всего подложить в месте, отстоящем примернона треть пролета арки. Для того чтобы добраться до верхней поверхностиарки, обычно необходимо сначала сделать подкоп со стороны проезжей частимоста. Но земляные работы всегда требуют времени, вот почему так частосрывались планы взорвать мост вслед за отступающей армией.
Рис. 74. Арка с тремя шарнирными точками. Рис. 75. Появление четвертого шарнира влечет за собой разрушение арки. Все это свидетельствует об исключительной устойчивости арок и о том, что они неслишком чувствительны к смещениям в основаниях. В то время как смещения вфундаменте стены могут вызвать обвал[69],смещения в основании арки вызовут в ней только перекосы, которые для арокдовольно обычны. Так, мост Клэр-на-задах в Кембридже весьма заметно изогнут посрединеиз-за смещений в основаниях арки (рис. 76). Это произошло уже давно, итем не менее мост абсолютно безопасен.
Рис. 76. Мост Клэр-на-задах в Кембридже. Смещения в основаниях привели кперекосу арки, что совершенно не повлияло на безопасность моста. Точно так же арки очень хорошо выдерживают землетрясения и такого роданапасти, как современные потоки транспорта. Так что не удивительно, что наши предки часто были более чем приверженык аркам: арка может устоять, даже если вы серьезно ошиблись в вычисленияхпри ее проектировании (или вообще обошлись без всяких вычислений) и вдобавокрешили строить все сооружение на болоте. Последнее на самом деле случилосьс несколькими английскими кафедральными соборами. Следует заметить, что среди развалин чаще всего наиболее сохранившимисяоказываются арки. Отчасти это связано с присущей им устойчивостью, хотяне исключено и то, что клинчатые камни арок меньше интересовали окрестныхкрестьян, чем прямоугольные камни стен. (Последним объясняется и сохранностькруглых колонн на развалинах греческих храмов.) Добиться того, чтобы линия давлений проходила заведомо внутри стеныили арки, как правило, легче в случае толстостенной кладки. Но сплошнойкирпич и каменные работы очень дороги. Чтобы увеличить толщину стен безбольших затрат, римляне стали использовать монолитный бетон. Он представлялсобой смесь вулканического туфа (pulvis puteolanis ), весьма распространенногов Италии, с известью и добавками песка и гравия. Если стены и арки делать более толстыми, они становятся более устойчивымии нет нужды увеличивать их вес. Но чем легче материал, требующий транспортировкии обработки, тем меньше, по-видимому, будет стоимость конструкции. Витрувий,выдающийся ученый древности (расцвет его творчества приходится на 20-егоды до н.э.), известный своими трудами по архитектуре и баллистике, свидетельствуето том, что в его время легковесный бетон нередко получали, добавляя порошокпемзы. Величественный Софийский собор в Константинополе (528 г.) построенименно из такого материала. Уменьшение веса и стоимости бетона может быть достигнуто также и путемзаполнения цементной массы самыми разными сосудами. В древнем мире в виноделиии виноторговле использовались амфоры. Эти большие глиняные сосуды скапливалисьв огромных количествах. Очевидно, само собою напросилось решение бросать их вбетон. Это обнаружилось во многих поздних римских постройках. В частности,имеются свидетельства, что из такого рода "тары" были сделаны стены прекрасныхранневизантийских церквей в Равенне[70].
|
Последнее изменение этой страницы: 2019-05-07; Просмотров: 294; Нарушение авторского права страницы