Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Поведение существующих в природе мягких тканей
Насколько мне известно, в наше время практически нет клеток, стенкикоторых созданы просто механизмом поверхностного натяжения. Однако с механическойточки зрения стенки многих реально существующих клеток ведут себя довольноблизко к тому, как вели бы себя подобные стенки. Одна из трудностей, которыемогли бы возникнуть, если бы использовалось просто поверхностное натяжение,состоит в том, что сила поверхностного натяжения постоянна, - ее нельзяувеличить, сделав оболочку толще, и это накладывает ограничение на наибольшиеразмеры "контейнеров", построенных по такой схеме. Однако Природа вполне способна создавать материалы, которые имеют свойстваповерхностного натяжения, так сказать, "по всей их толщине". Испытываянекоторое смущение, приведу все же в качестве примера следующий многимзнакомый факт. Когда зубной врач просит сплюнуть в его ванночку, струйкаслюны иногда бесконечно растягивается и практически не разрывается. Молекулярныймеханизм такого поведения остается совершенно непонятным, а в терминахнапряжения и деформации это поведение выглядит примерно так, как показанона рис. 48.
Рис. 48. Кривые деформирования стали, кости и слюны. Большинство тканей животных не так растяжимы, как слюна, но вплоть допятидесятипроцентных деформаций очень многие из них обнаруживают аналогичноеповедение. Более или менее похожим образом мочевой пузырь у молодых людейможет растягиваться до деформаций примерно 100%, а у собак - 200%. Какупоминалось в гл. 2, мой коллега д-р Юлиан Винцент недавно показал, что,в то время как мягкая кожица самца саранчи и молодой самки саранчи могутпереносить деформации приблизительно до 100%, мягкая кожица беременнойсамки саранчи может растягиваться до неправдоподобно большой величины -до деформаций 1200% и после этого не теряет способности полностью возвращатьсяк своему первоначальному состоянию. Хотя зависимость напряжения от деформации для большинства пленок и другихмягких тканей и не выражается строго горизонтальной прямой, она часто приближаетсяк ней, во всяком случае вплоть до деформаций около 50%. Представляетсяинтересным выяснить, каковы следствия такой зависимости. Действительно,любая конструкция из подобных материалов должна с необходимостью напоминатьнечто состоящее из пленок жидкости, на которые действует поверхностноенатяжение. Принимая ванну, вы без труда можете понаблюдать за поведениемтаких пленок - мыльных пузырей. Важно то обстоятельство, что упомянутого рода материал или оболочка- это, по существу, "устройство постоянного напряжения", то есть напряжениев нем может принимать только одно-единственное значение, и это напряжениебудет действовать во всех направлениях. Единственной формой оболочки, совместимойс этим условием, является сфера или часть сферы. Это хорошо демонстрируетмыльная или пивная пена. Если из таких оболочек нужно создать удлиненноесущество, то, по-видимому, лучшим, что можно сделать, будет "сегментированная"конструкция типа той, что показана на рис. 49, и на самом деле созданиятипа червя часто имеют подобное строение.
Рис. 49. "Сегментированное" существо.Напряжения в оболочке в обоих направлениях одинаковы. Как бы ни были хороши подобные оболочки для червей, их нельзя использовать,если нужно получить ровную цилиндрическую трубку, такую, как кровеносныйсосуд. Для труб, как мы видели в гл. 5, окружное напряжение всегдавдвое больше осевого напряжения, и именно из-за этого различия в напряженияхоболочки такого рода здесь не подходят. Здесь требуется материал, для которогонапряжение растет с ростом деформации, как, например, это показано на рис. 50.
Рис. 50. Для образования оболочки цилиндрического контейнера напряжениепленки материала должно расти с ростом деформации, что позволит окружномунапряжению быть вдвое больше осевого. К сильно растяжимым твердым телам, которые удовлетворяют этому условию,относится, совершенно очевидно резина, и в настоящее время существует множествоматериалов типа резины, как натуральных, так и синтетических. Некоторыеиз них способны испытывать упругие деформации до 800%. Материаловеды называютих эластомерами. Резиновые трубы широко используются в технике, и можно было бы предположить,что Природе для вен и артерий следовало бы создать материал типа резины.Однако Природа не пошла таким путем - и у нее были на это веские основания.Для материалов типа резины зависимость напряжения от деформации имеет оченьхарактерную S-образную форму (рис. 51).
Рис. 51. Кривая деформирования, типичная длярезины. Мои собственные не очень строгие расчеты показывают, что если из материалас такой кривой деформирования сделать цилиндрическую трубку и накачиватьв нее газ или жидкость, создавая внутреннее давление, то после того, какокружная деформация достигнет величины 50% или несколько больше, процессдеформирования станет неустойчивым и на трубке образуется сферическая выпуклость(в медицине такого рода выпуклость квалифицируется как "аневризм"), такчто трубка станет похожа на змею, проглотившую футбольный мяч. Этот результатлегко воспроизвести экспериментально, надувая резиновый детский "шарик"цилиндрической формы (рис. 52), так что выполненные мною расчеты, вероятно,правильны.
Рис. 52. Продолговатый воздушный "шарик", иллюстрирующийобразование сферической выпуклости при увеличении внутреннего давления. Вот почему упругое поведение стенок артерий не похоже на поведение резины. Но поскольку в венах и артериях на самом деле возникают деформации порядка50%, а с другой стороны, как вам скажет любой врач, появление аневризмовв кровеносных сосудах крайне нежелательно, упругие характеристики материаловтипа резины совершенно неподходящи для большинства оболочек внутри нашеготела, они редко встречаются у животных тканей. Если выполнить соответствующие расчеты, то оказывается что упругимихарактеристиками, обеспечивающими полную устойчивость при больших деформацияхрассматриваемой системы с внутренним давлением, являются только характеристикитипа тех, что представлены на рис. 53. Такая форма зависимости напряженияот деформации (с небольшими вариациями) и в самом деле является весьмаобычной для тканей животных, в особенности для пленок. Почувствовать этоможно, потянув себя за мочку уха.
Рис. 53. Кривая деформирования, типичная для мягких тканей животных. В связи с рис. 53 возникает вопрос, проходит ли для рассматриваемыхматериалов кривая зависимости напряжения от деформации через начало координат(точку, где и напряжение, и деформация равны нулю) или при обращении деформациив нуль в материале все еще остается некоторое конечное напряжение. (Вопрос,несомненно, рассчитан на некоторое замешательство инженеров, воспитанныхна гуковских материалах, подобных стали.) Однако, насколько можно судитьпо экспериментам, для живого организма эта точка нулевых напряжении и деформацийне соответствует какому-либо реальному начальному состоянию (так же обстоялобы дело в любой конструкции, состоящей, скажем, из мыльных пленок). Вовсяком случае, артерии постоянно находятся в организме в натянутом состоянии,и, если их извлечь из живого или только что умершего животного, они оченьзначительно сократятся. Как мы увидим ниже, это натяжение артерий может служить дополнительнымсредством для предотвращения тенденции к изменению их длины при изменениидавления крови. Иначе говоря, оно служит целям выравнивания осевого и окружногонапряжений в стенках артерии, то есть стремится вернуть систему к томусостоянию, которое характерно для поверхностного натяжения, и поэтому,возможно, существовало в живой природе в очень далеком прошлом. У людей,испытывающих сильную и продолжительную вибрацию, например у лесорубов,работающих цепными пилами, это натяжение может быть утрачено, тогда артерииу них удлиняются и становятся изогнутыми, скрученными или зигзагообразными.
|
Последнее изменение этой страницы: 2019-05-07; Просмотров: 319; Нарушение авторского права страницы