Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Масштаб, пропорции и надежность



 

Хотя, как утверждают, одни конструкции поддерживают силы небесные, адругие не разваливаются благодаря краске или ржавчине, проектировщик, еслион сознает свою ответственность, всегда стремится получить объективныегарантии прочности и устойчивости того, что он предлагает строить. Еслион не в состоянии произвести соответствующие расчеты на современном уровне,тогда, очевидно, необходимо либо сделать модель конструкции, либо определитьее размеры, увеличивая в определенном масштабе размеры какого-то уже существующегообразца, который оказался удачным.

Именно такими методами пользовались вплоть до самого недавнего времени.Возможно, к ним прибегают еще и сейчас. Но модели хороши лишь тогда, когдамы хотим посмотреть, как будет выглядеть вещь, а для предсказания прочностиэтот метод слишком ненадежен. Дело в том, что вес конструкции изменяетсяпропорционально кубу ее размеров. Так, если мы увеличим все размеры вдвое,вес возрастет в 8 раз. Площади же поперечных сечений тех или иных элементовконструкции, которые должны выдерживать нагрузку, изменяются пропорциональноквадрату размеров конструкции, и при увеличении всех размеров вдвое площадивсех поперечных сечений увеличатся только вчетверо. Поэтому с увеличениемразмеров напряжения растут линейно. Это означает, что если, например, мывдвое увеличили все размеры, то получили и удвоенные напряжения со всемивытекающими отсюда последствиями.

Прочность конструкции, которая может развалиться вследствие разрушенияматериала, нельзя предсказать, наблюдая лишь поведение моделей или применяяоперацию изменения масштаба к уже существующим образцам.

Это правило, установленное Галилеем, известно как "закон двух третей";оно является веским основанием для применения современных методов расчетапри проектировании автомобилей, кораблей, самолетов, станков. Возможно,именно поэтому всех этих конструкций до недавнего времени и не существовало,по крайней мере в их современной форме. Однако при создании больших каменныхсооружений мы можем не обращать внимания на закон двух третей, поскольку,как уже говорилось, здания обычно рушатся вовсе не из-за разрушения материалапри сжатии. Напряжения в каменной кладке столь малы, что мы можем позволитьсебе практически неограниченно увеличивать размеры сооружений. Однако вотличие от большинства других конструкций здания разрушаются потому, чтоих стены теряют устойчивость и опрокидываются, а устойчивость при любыхразмерах может быть предсказана путем исследования модели. В принципе устойчивостьздания сродни устойчивости весов или безмена (рис. 77).

 

 

Рис. 77. Устойчивость здания подобна устойчивостивесов, на нее не влияет изменение масштаба.

Опрокидывающие моменты, действующие на каждую из сторон такого устройства,с изменением размеров будут изменяться как их четвертая степень, и всеустройство будет по-прежнему находиться в равновесии. Таким образом, еслине заваливается маленькое здание, можно не беспокоиться и об устойчивостиего копии, если она увеличена в соответствующем масштабе; именно этот фактлежит в основе "таинств" средневековых строителей, которые сводятся к наборуопределенных правил и пропорций. Известно, что эти строители использовалисделанные из гипса или сложенные из камня модели, порою их высота достигала18 м. Такая методика, как правило, оказывалась плодотворной даже в случаяхчрезвычайно сложных конструкций, подобных Реймскому кафедральному собору(рис. 78).

 

 

Рис. 78. Контрфорсы Реймского собора.

В классической греческой архитектуре арки, как правило, не встречаются,им предпочитали каменные балки или перемычки. Растягивающие напряженияв этих балках, или архитравах, были довольно велики и нередко приближалиськ предельным. Многие из архитравов треснули еще в древние времена. С этимсвязано армирование мраморных балок железом, например в Пропилеях. Дорическиехрамы не обваливались благодаря тому, что их короткие и высокие в сечениикаменные балки, треснув, превращались в арки (рис. 79 и 80).

 

 

Рис. 79. Короткая каменная перемычка (архитрав) под действием растягивающихнапряжений, треснув, превращается и арку с тремя шарнирными точками ипродолжает держать нагрузку.

Для греческой трабейской[71] архитектурытребовались очень большие каменные блоки. По мере того как цивилизацияприходила в упадок, сложнее становилось перевозить большие грузы, возможно,именно это послужило одной из причин пристрастия средневековых строителей кготическим аркам и сводам, которые можно было строить из камней совсем малогоразмера.

Еще два столетия назад Джон Соун в своих лекциях по архитектуре отметил, что,несмотря на трудности, связанные с применением каменных балок, сооружениядревних часто имели гигантские размеры, намного превосходившие современные емуздания. Так, Парфенон, например, значительно больше собора св.Мартина-на-полях[72]. Тем не менее Парфенон, имея размеры 69 на 30м, невелик по сравнению с построенным Адрианом храмом Зевса Олимпийского (138г.), размеры которого составляют 108 на 52 м, - он занял бы большую частьТрафальгарской площади. Но и этот храм кажется меньше, чем он есть на самомделе, на фоне находящихся поблизости стен Акрополя (рис. 80). Точно так жевпечатляют размеры каменной кладки римских мостов и акведуков.

 

 

Рис. 80. Развалины храма Зевса Олимпийского в Афинах (видна трещина наархитраве).

К разрушению этих античных конструкций люди приложили руку в значительнобольшей степени, чем природа, но некоторые из них хорошо сохранились идо наших дней. Однако в постройке этих сооружений древние в большей илименьшей степени следовали известным образцам. Если почему-либо этого неделалось, сооружения нередко оказывались "плохо склеенными". Корабли иповозки древних представляются нам сейчас крошечными и непрочными, а зданияновой и необычной формы, подобные римским инсулам, которые представлялисобой отдельно стоящие многоквартирные дома, к прискорбию, рушились стольчасто, что император Август был вынужден издать закон, ограничивающий ихвысоту 18 м.

 

О позвоночнике и скелете

 

Позвоночник людей и животных состоит из набора позвонков из твердойкостной ткани, по форме напоминающих маленькие барабаны. Между ними имеются"межпозвоночные диски", которые состоят из сравнительно мягкого материала,что позволяет позвонкам получать некоторые ограниченные взаимные смещения.Как правило, позвоночный столб подвергается общему сжатию - как под действиемвеса организма, который на нем держится, так и под действием натяженияразличных мышц и сухожилий.

У молодых людей материал межпозвоночных дисков обладает гибкостью ивязкостью и в случае необходимости может выдерживать значительные растягивающиенапряжения. Поэтому при повреждениях позвоночника под действием растягивающихсил разрушения обычно происходят в костях, а не в дисках. Однако с годами,начиная примерно с двадцати лет, материал дисков постепенно теряет своюгибкость, его прочность на разрыв падает, а достигнув почтенного возраста,наш позвоночник становится очень похож на колонну в храме. Позвонки уподобляютсякаменным барабанам, а диски - соединяющему их непрочному строительномураствору. Хотя диски все еще могут воспринимать небольшие растягивающиенапряжения, таких напряжений следует избегать.

Вот почему людям среднего возраста рекомендуется удерживать линию давленийвозможно ближе к центру позвоночного столба, именно в этом секрет правильногои неправильного способов поднятия тяжестей. Если груз поднимется неправильно,то в соединениях возникают слишком большие растягивающие силы и одно изсоединений может поломаться. Результатом этого будет "соскользнувший диск"или одна из тех разнообразных и довольно таинственных неприятностей, которыемы объединяем под общим названием "люмбаго", прострел, и которые обычнопричиняют сильную боль. Поскольку поведение позвоночника в какой-то степенипохоже на поведение стены или каменной колонны и допустимые ситуации определяются"правилом средней трети", все сказанное о пропорциональном увеличении размеровзданий применимо и к размерам животных. Вообразите, как будут менятьсяразмеры маленького животного. По мере увеличения его параметров толщинапозвонков будет изменяться пропорционально характерному размеру. Однакобольшинство других костей, таких, как ребра и кости конечностей, подвергаютсяглавным образом действию изгибающих нагрузок (подобно перемычкам храма),и эти нагрузки в основном пропорциональны массе животного. Это приводитк тому, что зависимость толщины таких костей от размеров животного должнабыть более сильной, чем просто линейная.

Если мы посмотрим в музее на скелеты нескольких близких видов животныхразного размера, например обезьян, то окажется, что, в то время как размерыпозвонков мелких и средних видов обезьян, горилл и человека в основномпропорциональны росту особей данного вида, толщина и вес костей конечностейи в особенности ребер растут гораздо быстрее, чем размеры животного (рис.81).

 

 

Рис. 81. Скелеты гиббона (слева) и гориллы (справа) иллюстрируют действиезакона двух третей: с увеличением размеров животных толщина их ребер и костейконечностей растет быстрее, чем толщина позвоночника.

Природа в этом отношении оказалась мудрее римских архитекторов: с увеличениемразмеров сооружавшихся храмов они отказались от надежного приземистогодорического стиля и стали строить их в витиеватом и великолепном коринфскомстиле с тонкими архитравами, которые часто не выдерживали непропорциональныхнагрузок.

 

 

Глава 9

 

Кое-что о мостах, или святой Бенезе и святой Изамбар

 

 

Мост в столице развалился,

Развалился, развалился.

Мост в столице развалился,

Красавица моя.

Он из камня, кирпича,

Кирпича, кирпича.

Он из камня, кирпича,

Красавица моя,

Шли заставы на всю ночь,

На всю ночь, на всю ночь.

Шли заставы на всю ночь,

Красавица моя.

 

 

Поразмыслив над этим незатейливым детским стишком, понимаешь, что это -порождение боязливого суеверия. Хотя первые определенные упоминания о немотносятся ко временам не столь и ранним, к XVII в., он несомненно родилсягораздо раньше, и в "Оксфордском сборнике детских стихов" ему посвященонесколько страниц довольно отвратительного текста. По всему миру былраспространен обычай танцев на мосту (on у danse, on у danse, sur le pontd’Avignon- там танцуют, там танцуют на Авиньонском мосту ) и жертвоприношений при его закладке. И это не только легенды. Так, однажды в основании моста былобнаружен замурованный скелет ребенка[73].

Возможно, с этим как-то связано появление в Средние века в Европе монашескихорденов строителей мостов - fratres pontifices . В таком ордене состоялсвятой Бенезе, по замыслам которого, как предполагают, был построен Авиньонскиймост. В детстве Бенезе, как и позже Телфорд, был пастушонком, и хочетсядумать, что, став строителем, он обходился без жертвоприношений и от негопошли те танцы и мелодия, под которую французские дети танцуют до сих пор.У французской ветви ордена строителей мостов был монастырь вблизи Парижас очаровательным названием Святой-Жак-с-большим-шагом.

На практике мосты предназначены для того, чтобы тяжелые самодвижущиесяэкипажи преодолевали по ним провалы и расщелины. Это может быть достигнутос помощью различных технических средств, и здесь допустимо большое разнообразиеконструктивных решений.

Метод, избираемый в каждом конкретном случае, зависит не только от физическихи экономических требований, но также от моды и прихоти инженера. Почтикаждый мыслимый способ, которым можно построить мост, был хотя бы однаждыопробован на практике. Естественно предположить, что какой-то один из принциповпостройки, оказавшийся "наилучшим", мог бы стать общепринятым, однако этоне так, и чем дальше, тем больше становится получивших широкое применениеконструктивных схем.

На территориях развитых стран мостов очень много и они очень разнообразны.Вместе взятые, они могли бы образовать интереснейшую экспозицию, нагляднодемонстрирующую различные конструктивные решения. В большинстве другихконструкций их элементы трудно разглядеть, они могут быть скрыты обшивкой,изоляцией, электрическим монтажом, украшениями. Мосты же хороши тем, чтодостаточно взгляда, чтобы понять особенности конструкции и то, как онаработает.

 

Арочные мосты

 

Арочные мосты были популярными всегда, и до сих пор различные их формывсе еще остаются в большой моде. Можно построить вполне надежную простуюкаменную арку, расстояние между опорами которой более 60 м. Все возраженияпротив арочной конструкции моста обычно связаны с его стоимостью, высотойарок, величиной нагрузки на опоры или на фундамент.

Если говорить о простых арках в форме полукруга, широко применявшихсяво времена древнего Рима и в Средние века, то в них неукоснительно выполнялосьодно непременное требование: высота арки составляла около половины длиныпролета. Таким образом, пролет в 30 м требовал высоты арки по крайней мерев 15 м. На практике это довольно много, однако не связано с особыми трудностями,если требуется построить мост над расщелиной глубиной более 15 м, посколькув этом случае арка может быть опущена в расщелину так, чтобы ее вершинанаходилась на уровне подходящей к мосту дороги. Но вот если мост нужнопостроить на плоской местности, то он будет либо слишком "горбат", а потомунеудобен и опасен, либо потребует длинных и дорогих наклонных съездов.

Проблема стала особенно острой с появлением железных дорог: для поездовнежелательны "горбатые" мосты, как и вообще перепады высоты, а длястроительства пологих съездов серьезным препятствием служит высокая стоимостьземляных работ. Один из способов обойти эту трудность, по крайней мере отчасти,- построить арку сравнительно небольшой высоты. В 1837 г. в связи с прокладкой Великой западной железной дороги Изамбар-Кингдом Брюнель построил мост черезТемзу[74]в Майнхеде, состоящий из двух кирпичных арок. Каждая арка моста имеет пролет 39м при высоте всего в 7,3 м (рис. 82).

 

 

Рис. 82. Мост в Майнхеде, построенный Брюнелем в 1837 г. Он имеет самыедлинные и плоские каменные арки в мире. Предсказания, что такие аркиобязательно должны обвалиться, не сбылись по сей день, хотя мост выдерживаетвес поездов, вдесятеро больший, чем во времена его постройки.

Как публика, так и специалисты были в ужасе, в газеты потоками шли письмас пророчествами, что мост обязательно рухнет. Чтобы отвести от себя этипотоки негодования, а возможно, и из чувства юмора Брюнель не спешил убратьдеревянные леса и опоры, на которых собирались арки. Естественно, говорили,что он боится это сделать. Но когда, спустя год, опалубку разрушил шторм,арки стояли как ни в чем не бывало. Тогда Брюнель открыл секрет: оказывается,после завершения строительства монтажные опоры опустили на несколько сантиметров,так что в течение многих месяцев они никак не соприкасались с мостом. Мостстоит и поныне, хотя вес проходящих по нему поездов бывает в 10 раз большим,чем тот, на который рассчитывал Брюнель.

Если мы придаем арке менее крутую форму, уменьшая отношение ее высотык пролету, боковое давление вдоль арки на клинчатые камни, как и следовалоожидать, увеличивается. Однако сжимающие напряжения, как правило, все ещегораздо ниже предела прочности каменной кладки и камням редко грозит опасностьразрушения, хотя, когда арка вводится в строй и монтажные опоры убираются,ее перемещения бывают довольно значительны и могут достигать несколькихсантиметров.

Наиболее опасными для невысокой арки являются последствия большого боковогодавления на опоры. Если фундаментом служит достаточно твердая порода, напримерскала, то все обходится, но если опоры построены на мягком грунте, то прислишком большом боковом давлении могут возникнуть серьезные неприятности.К сожалению, нужда в длинных, не очень крутых арках возникает именно тогда,когда мосты строятся через реки, протекающие по низменным, болотистым равнинам.Именно этим вызвано строительство мостов со множеством небольших арок.Не случайно почти все длинные средневековые мосты многоарочные. Недостаткамитаких мостов являются высокая стоимость возведения многочисленных быков(обычно под водой и часто в топком грунте), а также большое количествоперегораживающих фарватер опор, которые создают неудобства и опасностьдля судоходства.

 

Чугунные мосты

 

Некоторые недостатки арочных мостов можно преодолеть, если при их созданииотойти от традиционных материалов. К 70-м годам XVIII в. благодаря усовершенствованиюдоменного процесса значительно удешевилось производство чугуна, что позволилоотливать из него клинчатые "камни". По своим свойствам чугун сильно отличаетсяот железа и стали: он весьма хрупок и, выдерживая большие сжимающие нагрузки,весьма непрочен и ненадежен при растяжении. Этим он напоминает камень.Поэтому в строительстве с ним следует обращаться примерно так же, как скаменной кладкой.

Преимущество чугуна в сравнении с традиционной каменной кладкой состоитв том, что из него можно отливать ажурные решетчатые архитектурные детали,а это позволяет сильно снизить вес конструкции. Кроме того, лить чугункуда как дешевле, чем обтесывать камень. Наконец, чугунные мосты были весьмаизящными (до той поры, пока не начали портиться вкусы, - приблизительнодо первого билля о реформах[75]).

Чугун принес в мостостроение двойную пользу. Во-первых, он сократилзатраты труда и транспортные расходы; во-вторых, что значительно важнее,уменьшились вес арок и, следовательно, нагрузка на опоры, а это позволилостроить менее крутые арки с более дешевыми фундаментами.

Любопытно, что преимущества новой техники мостостроения одним из первыхоценил американец Томас Пейн (1737-1809), известный в истории как автор"Декларации о правах человека". Пейн спроектировал большой чугунный мостчерез реку Скуокилл у Филадельфии. Он приехал в Англию, чтобы заказатьчугунное литье, и пока его заказ был в работе, решил навестить в Парижесвоих друзей-якобинцев. Симпатии к французской революции не помешали Пейнуоказаться не только в тюрьме, но и почти на гильотине. Спасло его падениеРобеспьера.

В отсутствие Пейна его финансовые дела пришли в упадок, чугунное литьебыло продано и пошло на постройку моста через Вер в Сандерленде. Арка,законченная в 1796 г., имела пролет длиной около 70 м при высоте всегооколо 10 м. Причиной того, что сорока годами позже Брюнель не решился использоватьчугун для моста в Майнхеде, вероятнее всего, было опасение, что возникающиепри движении поездов вибрации могут привести к растрескиванию этого хрупкогоматериала. Во всяком случае, его каменные арки работали прекрасно.

В XIX в. было построено множество чугунных арочных мостов. Хотя в большинствеслучаев они были удачными, в наше время такие мосты строятся очень редко.Дело в том, что сегодня существуют более дешевые пути достижения тех жецелей. Приземистые чугунные арочные мосты на первый взгляд весьма похожина балку (см. гл. 10). Конструктивно же это совершенно различные элементы:материал арки всюду находится (или должен находиться) в состоянии сжатия,в то время как нижняя сторона балки подвергается растяжению. Если материалможет выдерживать растягивающие напряжения, то конструкция в виде балкибудет всегда и легче, и дешевле, чем арка, несущая ту же предельную нагрузку.

Некоторые из первых инженеров, в том числе и знаменитый Роберт Стефенсон(1803-1859), соблазнившись возможной экономией, пошли на весьма рискованноеприменение чугунных балок. Используя свою чрезвычайно высокую профессиональнуюрепутацию, Стефенсон уговорил железнодорожные компании построить несколькосотен чугунных балочных мостов. Но мы уже говорили, что чугун непрочени коварен при растяжениях, поэтому эти мосты действительно оказались оченьопасными. В конце концов все их пришлось заменить, невзирая на расходы.

 


Поделиться:



Последнее изменение этой страницы: 2019-05-07; Просмотров: 256; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.044 с.)
Главная | Случайная страница | Обратная связь