Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Адекватность и эффективность математических моделей. Общая логика построения моделей (технология математического моделирования).



Таким образом, можно сделать заключение: наилучшее в практическом отношении качество или эффективность любой модели достигается как разумный компромисс между близостью модели к оригиналу (адекватностью) и простотой, обеспечивающей возможность и удобство использования модели по её прямому назначению; чрезмерная точность модели на практике не менее вредна, чем её неполнота и грубость.

Проблема моделирования состоит из трех задач:

· построение модели (эта задача менее формализуема и конструктивна, в том смысле, что нет алгоритма для построения моделей);

· исследование модели (эта задача более формализуема, имеются методы исследования различных классов моделей);

· использование модели (конструктивная и конкретизируемая задача).

Математическое моделирование часто начинается с необходимости прогнозирования развития некоторого процесса во времени. Акт математического моделирования начинается с введения системы величин, полностью (с точки зрения тех практических потребностей, которые вызвали необходимость получения прогноза) характеризующих процесс. Следующим шагом является запись соотношений (зависимостей, связей) между введенными величинами. Эти соотношения возникают в конечном счете из наблюдения, из опыта и являются результатом интуитивного осмысления существа процесса. Суть математического моделирования состоит в получении строгих, однозначно трактуемых соотношения между введенными характеристиками процесса путем пренебрежения тем, что в нем с точки зрения целей, которые ставятся при моделировании, можно считать неглавным, несущественным. Эти соотношения можно изучать чисто математическими средствами, т.е. извлекать из них формальные следствия, отвлекаясь от их содержательного смысла.

Технология математического моделирования содержит следующие этапы: составление модели, идентификация и верификация модели, эксплуатация модели.

Этап составления модели. Угадывание величин, характеризующий реальный процесс, как можно более консервативных, как можно более независимых от времени, расстояний, местоположений, других характеристик реальных процессов в пределах точности, приемлемой для практических целей.

Этап разработки и реализации процедуры вычисления внутренних величин модели по ее внешним величинам. Первый вопрос, который здесь возникает: существует ли в принципе такая процедура. Для простых моделей ответ на этот вопрос часто бывает очевидным. Для более сложных моделей это является предметом специального математического анализа. Для многих типов моделей утверждения о том, что это имеет место, называются теоремами существования и единственности. Математические модели, для которых удалость доказать теорему существования и единственности, принято называть замкнутыми. После установления замкнутости модели необходимо разработать процедуру вычисления внутренних величин по внешним. Если эта процедура имеет вид аналитический формулы, то часто такую модель называют аналитической. Для тех замкнутых математических моделей, для которых аналитических формул, дающих внутренние величины, не существует (либо они существуют, но мы не сумели выявить этот факт) возникает проблема разработки численной процедуры, дающей значения внутренних величин и функций от них, которые нас интересуют, с заданной точностью. Эта проблема решается в рамках направления в математике, которое называется вычислительной математикой или численными методами. После этого необходимо составить программу на ЭВМ, реализующую эту численную процедуру.

Этап эксплуатации модели. Этот этап существенно зависит от предыдущего. Другими словами, этап эксплуатации зависит об объема информации, которая необходима для выполнения вычислений интересующих нас величин и от объема самих вычислений. В зависимости от этих объемов можно выделить три основные формы эксплуатации математических моделей, если под эксплуатацией понимать акты осуществления прогноза развития моделируемого процесса или прогноза его свойств путем реализации процедуры вычисления внутренних величин модели по известных внешним величинам. Первая форма – это аналитические расчетные формулы. Вторая форма эксплуатации моделей – программы на ЭВМ, рассчитывающие интересующие нас функции внутренних величин по задаваемым внешним величинам. Эти формы трактуются как основные. Кроме этих форм имеются различные их промежуточные варианты и комбинации. Третья форма эксплуатации моделей – это так называемые проблемно-ориентированные интерактивные системы. Интерактивные системы вместе с программой, реализующей расчеты интересующих величин, содержат также средства, позволяющие в диалоге с ЭВМ манипулировать внешними величинами, визуализировать и обрабатывать различным образом результаты расчетов. Интерактивные системы являются результатом соединения традиционной технологии математического моделирования с информационной технологией, возникшей на базе ЭВМ.

 

Билет №4


Поделиться:



Последнее изменение этой страницы: 2019-05-08; Просмотров: 603; Нарушение авторского права страницы


lektsia.com 2007 - 2025 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.009 с.)
Главная | Случайная страница | Обратная связь