Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Лоренцево сокращение длин.



 Лоренцево сокращение, также называемое релятивистским сокращение длины движущегося тела или масштаба — предсказываемый релятивистской кинематикой эффект, заключающийся в том, что с точки зрения наблюдателя движущиеся относительно него предметы имеют меньшую длину (линейные размеры в направлении движения), чем их собственная длина. Множитель, выражающий кажущееся сжатие размеров, тем сильнее отличается от 1, чем больше скорость движения предмета.Эффект значим только если скорость предмета по отношению к наблюдателю сравнима со скоростью света.Пусть стержень длины l движется (вдоль своей длины) со скоростью v относительно некой системы отсчёта. В таком случае в фиксированный момент времени расстояние между концами стержня составит

, где c — скорость света.
Величина, обратная ко множителю с корнем называется также Лоренц-фактором. С её использованием эффект можно сформулировать и так: время пролёта стержня мимо фиксированной точки пространства составит
При этом, все размеры поперёк движения не меняются.Сокращение длин возникает из-за свойств псевдоевклидовой геометрии пространства Минковского, аналогичных удлиннению сечения, например, цилиндра, когда оно проводится не строго поперёк оси, а косо. См. преобразования Лоренца.Говоря иначе, «одинаковый момент времени» с точки зрения рассматриваемой системы отсчёта не будет являться одинаковым с точки зрения стержня.Понятие «одинакового момента времени» с точки зрения теории относительности является неправильным. Поэтому, эффект в большинстве случаев можно понимать не как «изменение длины», а как отличие релятивистского понятия скорости от оного в галилеевой кинематике. Длинные предметы, разогнанные до околосветовых скоростей, пролетают намного быстрее, чем следовало бы ожидать, разделив их длину на величину v («скорость движения»). При неограниченном разгоне стержня время его пролёта будет стремиться к нулю, несмотря на то, что «скорость» ограничена постоянной c.Или, если представить себе трубопровод с околосветовым движением, то он сможет перекачать в единицу времени больший объём жидкости, нежели скорость света, умноженная на сечение трубы (при устремлении скорости к световой — неограниченный).Лоренцево сокращение лежит в основе таких эффектов как парадокс Эренфеста и парадокс Белла, показывающих непригодность понятий классической механики к СТО. Они показывают невозможность, соответственно, раскрутить и придать ускорение гипотетическому «абсолютно твёрдому телу».

20. Преобразования Лоренца

Пусть нам даны две системы отсчета k и k`. В момент t = О обе эти системы координат совпадают. Пусть система k` (назовем ее подвижной) движется так, что ось х` скользит по оси х, ось у` параллельна оси у, скорость v - скорость движения этой системы координат (рис. 109).

Точка М имеет координаты в системе k - х, у, z, a в системе k` - х`, у`, z`.

Преобразования Галилея в классической механике имеют вид:

Преобразования координат, удовлетворяющие постулатам специальной теории относительности, называются преобразованиями Лоренца.

Впервые они (в несколько иной форме) были предложены Лоренцем для объяснения отрицательного эксперимента Майкельсона-Морли и для придания уравнениям Максвелла одинакового вида во всех инерциальных системах отсчета.

Эйнштейн вывел их независимо на основе своей теории относительности. Подчеркнем, что изменилась (по сравнению с преобразованием Галилея) не только формула преобразования координаты х, но и формула преобразований времени t. Из последней формулы непосредственно видно, как переплетены пространственная и временная координаты.

21. Интервал и его инвариантность.

Преобразования Лоренца. Инвариантность интервала при этих преобразованиях. Собственное время. Собственная длинна.

 

Преобразования Лоренца обоснованы на принципе относительности (Утверждение впервые высказанное Г. Галилеем, о том, что во всех инерциальных системах координат механические явления протекают одиноково, называется принципом относительности Галилея. В дальнейшем в результате изучений других явлеий, в частности электромагнитных, справедливость этих полоений была признана для любых явлений. В таком общем виде оно называется принципом отнгсительности СТО или просто принципом относиельности) и принципа постоянства скорости света (независимость скорости света от скорости источника и скорости наблюдателя. Это постулат).

Однородность пространства: начало системы координат может быть помещено в любой точке и все геометрические соотношения между любыми геометрическими обьектами при этом совершенно одинаковы с теми, которые получаются при помещении начала координат в любую другую точку.

Изотропность пространтва: в каждой точке пространства можно ориентировать оси СК произвольным образом. При этом соотношения между геометрическими обьектами не имменются.

Однородность и изотропность времени является его главными свойствами в ИСО.

Однородность времени: это одиноковость развития и изменения данной физической ситуации независимо от того, в какой момент эта ситуюция сложилась.

Из однородности пространства и времени следует, что преобразования должны быть линейными. x?=Ф1(x,y,z,t),

y?=Ф(x,y,z,t),

z?=Ф3(x,y,z,t),

t?=Ф4(x,y,z,t).

Изходя из изотропности и однородности пространтва, мы можем как угодно поварачивать и смещать оси СК. ориентируем оси так:

Начало координат: Пусть в t=0 x=y=z=0 совпадает с x?=y?=z?=0 , тогда А5=0

y? = a1x + a2y + a3z + a4t;

z? = b1x + b2y + b3z + b4t;

Т.к. оси Y,Y? и Z,Z? параллельны след: y=0 y?=0, z=0 z?=0

0 = a1x + a3z + A4t;

0 = b1x + b2y + b4t; что возможно лиш при а1=а3=а4=0

0=в1=в3=в4 След. y?=ay и z?=az

y=y?/a z=z?/a так как масштаб в С.К. изменятся одинаково, значит а=1/а , значит а=1.

Следовательно y?=y; z=z?.

Преобразования для x и t: Вследствие линейности преобразований:

x?=?(x?vt) ? x=??(x?+vt)

Докажем, что ??=?. Пусть некоторый стержей покоится в системе К?: x2??x1?=l. В системе К он движется ? x1?=?(x1?vt0), x2?=?(x2?vt0) ? x2 ?x1=(x1??x2?)/?=l/?..

Пусть теперь тот же стержень в системе К и имеет в ней длину l. ? x2?x1=l. В системе К?, принятой за неподвижную, этот стержень двигается с v. ? x1=??(x1?+v0 t?), x2=??(x2?+v0 t?)

? x2??x1?=(x2?x1)/??. Согласно принципу относительности обе системы равноправны и длинна одного и того же стержня, движущегося в этих системах с одинаковой скоротью, должна быть обнакова ? ??=?. Воспользуемся постулатом скорости света: x?=ct?, x=ct. ?

ct?=? t(c?v), ct=? t?(c+v) ? ?= ? vt?=(x/?)?x?=(x/a)??(x?vt)=?vt+x((1/?)??) ? t?= , x?= , y=y?, z=z?. Обратные реобразования получаются заменой штрухованных элементов на нештрихованные и измененим знака скорости.

Инвариантом преобразований Лоренца явл. пространтвенно-временной интревал или просто интервал. Интервалом между точками (x1, y1, z1, t1) и (x2, y2, z2, t2) наз. величина

s=(x1?x2)2+(y1?y2)2+(z1?z2)2?c2(t1?t2)2

? эта величина имеет во всех СК одно и то же значения, т. е. явл. инвариантом преобразобаний Лоренца.

s2>0 ? интервал пространственноподобный.

s2>0 ? интервал времениподобный.

s2=0 ? интервал нулевой (такой интервал ? существуе между событиями, которые могут быть связаны сигналом, распространяющимся со скоростью света).

Время, которое измеряется по часам, связанным с движущейся точкой, наз. собственным временем этой точки.

Длинна, которая измеряется прибором, связанным с движущимся стержнем, наз. абсолютной длинной.

22. Закон сложения скоростей.

Скорости движения тела в различных системах отсчёта связывает между собой классический закон сложения скоростей.

Скорость тела относительно неподвижной системы отсчёта равна сумме скоростей тела в подвижной системе отсчёта и самой подвижной системы отсчёта относительно неподвижной.

Например, пассажирский поезд движется по железной дороге со скоростью 60 км/ч. По вагону этого поезда идет человек со скоростью 5 км/ч. Если считать железную дорогу неподвижной и принять её за систему отсчёта, то скорость человека относительно системы отсчёта (то есть относительно железной дороги), будет равна сложению скоростей поезда и человека, то есть

60 + 5 = 65, если человек идёт в том же направлении, что и поезд и 60 – 5 = 55, если человек и поезд движутся в разных направлениях. Однако это справедливо только в том случае, если человек и поезд движутся по одной линии. Если же человек будет двигаться под углом, то придётся учитывать этот угол, вспомнив о том, что скорость – это векторная величина.


Поделиться:



Последнее изменение этой страницы: 2019-05-08; Просмотров: 292; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь