Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Расчет емкостного аппарата, предназначенного для синтеза



Для проведения синтеза борат метилфосфита используется емкостной вертикальный гладкостенный аппарат с эллиптическим днищем, отъемной элиптической крышкой с гладкостенной рубашкой, с открытой турбинной мешалкой и характеризующийся следующими параметрами [3]:

 


Таблица 5.1 Основные технические параметры реактора

Параметр Значение
Номинальный объем V, м3 2, 5
Поверхность теплообмена F’, м2 4, 0
Мощность привода Nэл, кВт 5, 5
Частота вращения мешалки, об/мин 195
Диаметр аппарата D, м 1, 4
Высота заполнения аппарата Н, м 0, 9
Толщина стенки аппарата δ, м 0, 002
Диаметр мешалки d, м 0, 4
Число мешалок на валу zм 1
Заглубление мешалки hм1, м 0, 6
Рабочее давление рраб, МПа 0, 1
Коэффициент сопротивления мешалки 8, 4
Коэффициент сопротивления лопастей мешалки 3, 5

 

Ввиду того, что в начале процесса, реакционная масса представляет собой суспензию, то соответственно мощность перемешивания дисперсных систем будет отличаться от мощности перемешивания гомогенных жидкостей как из-за изменения плотности и вязкости, так из-за изменения условий обтекания лопастей мешалки. Поэтому целесообразно определить эти параметры:

Объемная доля дисперсной фазы на приходящий поток:

 

,

 

где Vф – объемная доля дисперсной фазы, дискретно распределенной в сплошной фазе Vс.

Для всех видов дисперсий их плотность ρ определяется плотностью дисперсной фазы ρ ф, плотностью сплошной фазы ρ с и величиной φ.


 

Динамическая вязкость дисперсии μ для суспензии для φ < 1, определяется по формуле

 

 

Центробежный критерий Рейнольдса

 

 

Согласно [35] аппарат работает в переходном режиме с сохранением сплошности.

Параметр высоты заполнения

 

 

Параметр гидравлического сопротивления

 

 

Параметры распределения скоростей ψ 1 = -0, 3, ψ 2 = -1, 25 [3].

Параметр глубины воронки В = 12 [3].

Глубина воронки

 


Из расчетов видно, что  0, 42 < 0, 6 – это говорит о том, что условие безопасности выполняется, а принятые характеристики мешалки обеспечивают нормальную работу аппарата.

Значение коэффициента К1, являющийся функцией ψ 1 и ψ 2, можно принять К1 = 0, 019 [3].

Критерий мощности КN

 

 

Мощность перемешивания

 

 

Мощность привода аппарата составляет 5 кВт, следовательно привод в состояние обеспечивать перемешивание заданного количества реакционной массы.

Выбор турбинной мешалки как перемешивающего устройства обусловлен тем, что она (мешалка) обеспечивает интенсивное перемешивание во всем объеме аппарата, ввиду создания радиальных потоков жидкости. Мощность, потребляемая турбинными мешалками, практически не зависит от вязкости среды [14].

В результате нагревания массы происходит ее гомогенизация. Повторные расчеты показывают, что мощность, затрачиваемая на перемешивание снижается и составляет N = 2, 9 кВт, при этом аппарат работает в турбулентном режиме Re = 173634 с сохранением сплошности, условие безопасности сохраняется  0, 48 < 0, 6 [3].

Выполним тепловой расчет гладкостенного аппарата с мешалкой.

Расчет теплоотдачи от перемешиваемой среды

Коэффициенты а1 а2 а3


 

Здесь с – удельная теплоемкость смеси Дж/(кг·К); λ – коэффициент теплопроводности среды Вт/(м·К)

Коэффициент теплоотдачи от перемешиваемой среды

 

 

Средняя разность температур:

Реакционная масса 25 оС → 120оС

Пар                          135 оС → 135оС

 

Δ tб = 110 оС Δ tм = 15 оС

 

Поверхностная плотность теплового потока

Согласно приведенным расчетам для нагревания заданного количества реакционной массы от 25 оС до 120 оС необходимо QF =951762490 Дж/цикл или 132189, 23 Вт

Поверхностная плотность теплового потока

 


Коэффициент теплоотдачи от теплоносителя

 

,

 

где  – соответственно плотность, динамическая вязкость и теплопроводность конденсата; tт – температура конденсации;  – плотность и удельная теплота парообразования насыщенного пара; – температура стенки со стороны греющего пара. Параметры теплоносителя представим в таблице

 

Таблица 5.2 Параметры насыщенного пара при tт = 135 оС [22].

Параметр Значение
Плотность конденсата кг/м3 1000
Динамическая вязкость конденсата Па·с 0, 0021
Теплопроводность конденсата  Вт/(м·К) 0, 68
Плотность насыщенного пара  кг/м3 1, 715
Удельная теплота парообразования  Дж/кг 2, 16·106

 

Средняя температура смеси

 

 

Температура стенки со стороны греющего пара в первом приближении

 

 

Коэффициент теплоотдачи от теплоносителя в первом приближении


 

Температура стенки со стороны греющего пара во втором приближении

 

 

Коэффициент теплоотдачи от теплоносителя во втором приближении

 

 

Дальнейший расчет ведем по второму приближению.

Примем тепловую проводимость загрязнений со стороны греющего пара 1/rзагр 1 = 5800 со стороны смеси 1/rзагр 2 = 5800 , коэффициент теплопроводности стали λ ст=46, 5  [22].

 

 

Коэффициент теплопередачи.

 


Расход пара определим на один цикл синтеза

 

 

Расчетная поверхность теплообмена

 

 

Как видно из приведенного расчета  – 2, 5м2 < 4, 2 м2, следовательно данный аппарат способен обеспечить нагрев заданного количества реакционной массы Gобщ = 1627, 39 кг/цикл от 25оС до 125оС.

Приведем принципиальную схему емкостного аппарата для данного процесса.

 

Рисунок 5.2 – Принципиальная схема емкостного аппарата

 

 


Экспериментальная часть


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 153; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.035 с.)
Главная | Случайная страница | Обратная связь