Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Теоремы второго метода Ляпунова. ⇐ ПредыдущаяСтр 5 из 5
Теорема 1. Пусть существует определенно-положительная функция Ляпунова , такая, что DV есть отрицательная функция. Тогда решение уравнения (1) устойчиво по Ляпунову. Доказательство. Пусть e — произвольная положительная постоянная, . Положим при . Так как V определенно-положительная, то . По l найдем такое, чтобы . Рассмотрим решение при . Покажем, что . (5) Пусть (5) не имеет места. Тогда существует такое, что , а при . В силу (3) и условия теоремы функция является при невозрастающей функцией t. Так как , то , тогда тем более , что противоречит определению T и тому, что . Таким образом, импликация (5) имеет место, а это и означает по определению устойчивость решения по Ляпунову. Теорема доказана. Следствие. Если уравнение (1) имеет в области G определенно-положительный интеграл, не зависящий от t и уничтожающийся в начале координат, то решение устойчиво по Ляпунову. Теорема 2. Пусть существует определенно-положительная функция Ляпунова , такая, что DV определенно-отрицательная при . Тогда решение уравнения (1) асимптотически устойчиво. Доказательство. Условия теоремы 1 выполнены, и решение устойчиво по Ляпунову. Следовательно, существует такое, что при . (6) Из определения асимптотической устойчивости в силу (4) заключаем, что достаточно доказать импликацию при . В силу (3) и условия теоремы — строго убывающая функция t. Предположим, что теорема неверна. Тогда . (7) Отсюда, из (6) и (4) следует, что при . По условию теоремы , где — определенно-положительная функция. Пусть . Из (3) следует, что при всех , что противоречит определенной положительности . Полученное противоречие доказывает теорему.
В случае когда уравнение автономно, условия теоремы (2) можно ослабить. Теорема 3. Пусть уравнение (1) автономно, выполнены условия теоремы 1 и множество не содержит целиком полных траекторий уравнения (1), за исключением положения равновесия . Тогда решение асимптотически устойчиво. Доказательство. Используем доказательство теоремы 2 до формулы (7) включительно. Далее, пусть — w-предельная точка траектории . Из определения w-предельной точки и (7) следует, что . По первому свойству предельных множеств (п. 1.3.) все точки траектории являются w-предельными для траектории . Следовательно, для всех t, при которых определено решение , . Отсюда и из (3) следует, что при указанных t , что противоречит условию теоремы, так как не совпадает с началом координат. Теорема доказана.
Пример. Рассмотрим уравнение движения диссипативной системы с одной степенью свободы , где удовлетворяют условию Липшица при , удовлетворяет условию при и при . Докажем, что положение равновесия асимптотически устойчиво. Соответствующая система двух уравнений имеет вид . В качестве функции Ляпунова возьмем полную энергию системы . В силу условия V —определенно-положительная функция, при этом . Следовательно, DV —отрицательная функция и множество M — интервал оси абсцисс при . Так как при при , то множество M не содержит целых траекторий, отличных от положения равновесия . По теореме 3 решение системы асимптотически устойчиво, что и требовалось доказать.
Перейдем к рассмотрению неустойчивости. Пусть — функция Ляпунова. Обозначим через любую связную компоненту открытого множества с началом координат на ее границе. Теорема 4. Пусть существует функция Ляпунова такая, что не пусто и при . Тогда решение уравнения (1) неустойчиво. Доказательство. Пусть . Будем рассматривать решения с начальной точкой . Достаточно показать, что для каждого из этих решений можно указать момент T (для каждого решения свой) такой, что . Пусть это неверно, т. е. существует решение , удовлетворяющее при всех неравенству . Покажем, что траектория решения принадлежит при . Действительно, по определению она может покинуть область только через ту часть ее границы, где . Но это невозможно, так как и при возрастании функция строго возрастает, пока , в силу (3). Итак, доказано, что при и . Следовательно, по условию теоремы при . Интегрируя (3) от до , получаем , что противоречит ограниченности при . Противоречие доказывает теорему.
Пример. Рассмотрим уравнение , где — удовлетворяющая условию Липшица при функция такая, что при . Докажем неустойчивость решения . Рассмотрим систему , соответствующую уравнению примера. В качестве функции Ляпунова возьмем . Имеем: . По теореме 4 решение системы неустойчиво, что и требовалось доказать. |
Последнее изменение этой страницы: 2019-10-03; Просмотров: 163; Нарушение авторского права страницы