Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ МКТ



СОДЕРЖАНИЕ

 

Введение

1 Функциональные возможности МКТ

2 Выбор и обоснование схемы электрической структурной МКТ

3 Выбор и обоснование схемы электрической принципиальной МКТ

3.1 Выбор элементной базы и разработка схемы электрической принципиальной МКТ

3.2 Описание принципа работы и настройка МКТ

4 Расчетная часть

4.1 Расчет потребляемой мощности МКТ

4.2 Расчет надежности МКТ

5 Конструкторская часть

5.1 Описание конструкции МКТ

5.2 Определение уровня унификации МКТ

6 Технологическая часть

6.1 Разработка техпроцесса сборки и монтажа МКТ

7 Организационно-экономическая часть

7.1 Оценка технического уровня МКТ

7.2 Расчёт затрат на техническую подготовку производства

7.3 Расчёт затрат на разработку и отладку программы

7.4 Расчёт себестоимости МКТ

7.5 Расчёт стоимости оборудования и капитальных затрат

7.6 Экономическая эффективность внедрения МКТ

8 Безопасность и экологичность

8.1 Анализ условий труда по факторам опасности и вредности, тяжести и напряжённости трудового процесса

8.2 Методы и средства улучшений условий труда и оптимизации трудового процесса

8.3 Электро и пожарная безопасность

8.4 Экологичность разрабатываемого устройства

9 Экспериментальная часть

9.1 Макетная сборка МКТ

9.2 Подсистема маршрутного компьютера-тестера

Заключение

Список используемой литературы


ВВЕДЕНИЕ

 

Как-то незаметно к нам подкрался новый век – век информационных технологий. И кто бы мог подумать, ну хотя бы лет десять назад, что компьютеры займут такие основательные позиции в нашей жизни.

Компьютер сегодня перестал быть вещью самодостаточной, вызывающей восторг и удивление, это повседневный инструмент для решения широкого круга задач. Компьютер нашел место и дома, и на работе.

А чем автомобиль хуже? Тем более, что для многих автомобиль – и работа, а зачастую и второй дом. Да и вообще за последние несколько лет в продукции автомобильного производства заметно прибавилось электронной начинки, а автомобилисту все сложнее управляться с ней в одиночку.

Именно для желающих жить с комфортом везде и всегда, в том числе и в собственном автомобиле, для этого необходимы специальные устройства, которые способны заметно облегчить нелегкую жизнь автомобилиста. Называются такие устройства бортовыми или маршрутными компьютерами.

В настоящее время на автомобилях широко применяются электронные блоки управления (ЭБУ) двигателями типа Бош М1.5.4 (N), Январь-5.1.x., ВС5.1, Январь-7.2. Работу этих блоков невозможно проконтролировать без специальных приборов, которые всегда желательно иметь " под рукой". Однако даже простейшие из них довольно сложны и поэтому недешевы.

Кроме управления двигателем, вышеназванные ЭБУ, вырабатывают сигналы с датчиков скорости и расхода топлива, которые выведены в салон автомобиля на специальный разъем для подключения маршрутного компьютера. Маршрутный компьютер позволяет отобразить различные параметры: время в пути, время в движении, пройденный путь, общий расход топлива, расход топлива на холостом ходу, текущую скорость, а также широкий спектр величин, рассчитанных на их основе (средняя скорость пути, средняя скорость движения и т.д.).

Технически возможно, а экономически целесообразно объединить маршрутный компьютер и диагностический тестер в одно устройство.

Целью дипломного проекта является разработка маршрутного компьютера-тестера для автомобилей (МКТ), который устанавливается в салоне автомобиля на штатное место, предусмотренное для бортового компьютера.


ВЫБОР И ОБОСНОВАНИЕ СХЕМЫ ЭЛЕКТРИЧЕСКОЙ ПРИНЦИПИАЛЬНОЙ МКТ

Описание принципа работы и настройка МКТ

 

Схема электрическая принципиальная представлена на чертеже АКВТ.230101.ДП00.10Э3.

Схема питания МКТ питается от бортовой сети автомобиля, в которой возможны значительные броски питания и помехи. Для исключения неблагоприятных факторов предназначен ряд дополнительных элементов. Для защиты схемы от «переполюсовки» служит диод (VD1). Данный диод с прямым током не менее 300 mA. Для защиты схемы от бросков по питанию служат специальные автомобильные варисторы R5 и R17

Интерфейс подключения к диагностической линии автомобиля (k-line) выполнен на специализированной микросхеме МС33290, которая может быть заменена на МС33199 или L9243, Si9243.

Биполярные транзисторы - любые маломощные n-p-n, микросхему часов DD1 M41T56 можно заменить на DS1307, пьезоизлучатель ВА1 - обязательно со встроенным генератором.

Загрузка программы в микроконтроллер. Микроконтроллер программируется через параллельный порт (LPT). Схема подключения микроконтроллера (через разъем X1) к LPT порту компьютера приведена в самой программе программирования. Необходимо учесть, что максимальная длина кабеля, соединяющего микроконтроллер с компьютером не должна превышать 20-30 см.

Настройка МКТ

В первую очередь необходимо:

- проверить отсутствие замыкания по питанию (между линиями +5В и GND). При отсутствии замыкания подается напряжение питания (12В) и необходимо убедиться в наличии +5В во всех точках схемы, куда +5В должны приходить.

- формирование сигнала " Сброс". При включении питания на выводе 9 RSТ микроконтроллера (МК) DD5 должна кратковременно появляться логическая " 1", а затем все время держаться уровень логического нуля.

- работа внутреннего генератора МК. На выводах 18 и 19 МК должен быть синус частотой 12 мГц, а на выводе 30 (ALE) должен быть меандр с частотой 2 мГц.

- правильность адресации к памяти программ. На выводе 29 (PME) МК должен быть уровень логической " 1". Если на выводе PME присутствует постоянная генерация - то контроллер работает с внешней памятью программ – необходимо убедится в наличии уровня логической " 1" на выводе 31 (DEMA) МК. Если на выводе PME периодически появляются пачки импульсов - происходит выход программы за пределы внутренней памяти программ, чего не должно быть. Скорее всего, микроконтроллер " чистый" или неверно запрограммирована программа.

После старта программа инициализирует последовательный порт и системный таймер (что никак не отражается на выводах МК), а затем инициализирует ЖКИ: на порт P2 микроконтроллера выставляются команды, сопровождаемые импульсами единичной полярности на вход E ЖКИ. После записи каждой команды МК переводит все линии порта P2 в единичное состояние и начинать опрашивать готовность ЖКИ, выдавая импульсы единичной полярности на вход Е ЖКИ. Если по какой-либо причине индикатор не выставляет флаг готовности, программа зацикливается на опросе готовности ЖКИ.

После инициализации экран ЖКИ должен очиститься и на него выводится, какой либо текст. Вывод текста аналогичен программированию ЖКИ. Если на дисплее горят черные квадраты, то необходимо отрегулировать яркость свечения индикатора потенциометром R4. При очищенном экране черных квадратов не должно быть видно (или они должны быть еле заметны).


РАСЧЕТНАЯ ЧАСТЬ

Расчет надежности МКТ

 

Надежность - это свойство изделия выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в допустимых пределах, соответствующих принятым режимам и условиям использования, технического обслуживания, ремонта, хранения и транспортирования.

К основным показателям надежности относятся:

1) вероятность безотказной работы;

2) интенсивность отказов;

3) наработка на отказ или среднее время безотказной работы;

Вероятность безотказной работы - это вероятность того, что в заданный интервал времени не произойдет ни одного отказа. Вероятность безотказной работы определяется по формуле

 

, (4.3)

 

где P(t) - вероятность безотказной работы (вероятность того, что в пределах заданной наработки, при заданных условиях отказа не произойдет);

е - основание натурального логарифма;

 - интенсивность отказов;

t - время безотказной работы.

Величина t показывает, какая часть элементов по отношению к общему количеству исправно работающих элементов в среднем выходит из строя за единицу времени.

Интенсивность отказов рассчитывается как сумма интенсивности отказов всех элементов блока. Интенсивность отказов элемента рассчитывается по формуле

 

, (4.4)

 

где  - интенсивность отказов при нормальных условиях;

кн - коэффициент нагрузки;

ку - коэффициент условий;

кТ - температурный коэффициент.

Коэффициент, учитывающий условия работы:

ку=1 - лабораторные условия;

ку=10 - стационарные условия;

ку= 100-700 - бортовые условия;

ку> 700 - космические условия.

Температурный коэффициент (кТ) находится в зависимости от совокупности воздействующих факторов и учитывает нагрев конструкции.

Коэффициент нагрузки характеризует электрический режим использования ЭРЭ и ИМС. Для разного вида элементов нагрузкой могут быть и являться различные параметры. Для резисторов, транзисторов - отношение мощности рабочей к номинальной; для конденсаторов - отношение рабочего напряжения к номинальному; для микросхем - отношение коэффициента разветвления рабочего к номинальному.

Коэффициент нагрузки резисторов рассчитывается по формуле (4.5), конденсаторов - по формуле (4.6), а ИМС - по формулам (4.7) и (4.8)

, (4.5) где Рраб - нагрузка на резистор в рабочем режиме;

 

Рном - номинальная нагрузка.

 

, (4.6)

 

где Uраб - напряжение на конденсаторе в рабочем режиме;

Uном - напряжение номинальное.

 

, (4.7)

 

где Рраб - нагрузка на ИМС в рабочем режиме;

Рном - номинальная нагрузка ИМС.

 

, (4.8)

 

где Краз.раб - рабочий коэффициент разветвления;

Краз.ном - номинальный коэффициент разветвления.

Подставив справочные данные в формулы (4.5), (4.6), (4.7), (4.8), рассчитал коэффициенты нагрузки, которые приведены в таблице 4.2.

Согласно техническому заданию на дипломный проект условия эксплуатации бортовые (Ку = 100).

Среднее время наработки на отказ рассчитывается по формуле

 

, (4.9)


где  - интенсивность отказов блока;

Тср - среднее время наработки на отказ (ожидаемая наработка объекта до первого отказа)

С учетом того, что данная схема используется в бортовых условиях (ку=100) значение  = 0, 00001327.

Подставив в формулу (4.9) рассчитанное значение  найдем среднее время наработки на отказ:

 

 

Подставив в формулу (4.3) расчетное значение  найдем вероятность безотказной работы блока для t=10000, аналогично найдем значение вероятности безотказной работы для различных значений t:

 

 

Результаты расчетов представлены в таблице 4.2

 

Таблица 4.2

Наименование и тип элемента Интенсивность отказов элемента Коэффициент нагрузки Температурный коэффициент Количество элементов Интенсивность отказов (х0.000001)
ИМС M41T56 0, 1 0, 5 0, 1 1 0, 005
ИМС AT24C64 0, 1 0, 5 0, 1 1 0, 005
ИМС MC33290 0, 1 1 0, 1 1 0, 01
ИМС AT89S53 0, 1 1 0, 1 1 0, 01
ИМС 7805 0, 1 0, 5 0, 1 1 0, 005
ИМС LM2931 0, 1 0, 5 0, 1 1 0, 005
ИМС SN7413N 0, 1 0, 5 0, 1 1 0, 005
Конденсаторы 0, 01 0, 2 0, 4 10 0, 008
Резисторы 0, 01 0, 5 0, 2 43 0, 043
Транзисторы 0, 5 0, 3 0, 5 2 0, 15
Диоды 0, 5 0, 3 0, 5 2 0, 15
Пайка 0, 0001 1 1 367 0, 0367
Итого         0, 1327

 

Данные для построения графика зависимости P(t):

 

t=1000 P(t)=0, 997

t=5000 P(t)=0, 981

t=10000 P(t)=0, 972

t=20000 P(t)=0, 946

t=30000 P(t)=0, 911

t=40000 P(t)=0, 882

t=50000 P(t)=0, 854

t=60000 P(t)=0, 816

t=70000 P(t)=0, 784

t=75000 P(t)=0, 785

 

По полученным данным построим график зависимости P(t)

 

Рисунок 4.1 - График зависимости P(t)

КОНСТРУКТОРСКАЯ ЧАСТЬ

Описание конструкции МКТ

 

Большое внимание в настоящее время при конструировании устройств уделяют повышению надежности конструкции, уменьшению габаритов и веса изделия, механизации и автоматизации технологического процесса изготовления того или иного изделия.

Разработанная конструкция МКТ выполнена на двухсторонней печатной плате, изготовленной по типовому технологическому процессу комбинированным способом.

Использование двухсторонней печатной платы позволило сократить материальные и трудовые затраты, использовать средства механизации и автоматизации в процессе изготовления печатной платы, сборки и монтажа.

В качестве материала для изготовления двухсторонней платы использован фольгированный стеклотекстолит СФ-2-35, толщиной 0, 8 мм, обладающий хорошим сцеплением с металлом (проводящим слоем), проницаемостью более 7.

Для обеспечения максимального быстродействия и помехоустойчивости схемы МКТ в разрабатываемой конструкции предусмотрено следующее:

- конденсаторы устанавливаются на той же стороне платы, на которой непосредственно находятся ИМС,

- для подведения напряжения питания и подключения шины «земля» используются крайние контакты электрического разъема,

- проводники по максимуму короткие и располагаются на различных сторонах платы и перекрещиваются под углом 45 или 90 градусов,

Для соблюдения эксплуатационных требований корпуса ИМС располагаются линейно и многорядно.

Конструкция блока используется в бортовой условиях. Максимальные геометрические размеры платы ограничиваются свободным пространством в корпусе. Максимальные габаритные размеры обеспечиваются рациональным взаимным расположением элементов и повышением плотности монтажа.

Для улучшения теплоотвода элементы установлены на плату с зазором.

В данной конструкции блока использованы ИМС со штыревыми выводами, которые выдерживают большие механические нагрузки.

При разработке печатных проводников схемы учены следующие требования:

1) шаг координатной сетки 2, 5 мм;

2) минимальный зазор между соседними проводниками не менее 1, 5 мм;

3) толщину и ширину проводников определяется в зависимости от материала диэлектрика и плотности тока;

4) минимальная ширина проводников не менее 1, 5 мм;

5) отверстия для конденсаторов, микросхем, резисторов металлизированы Ф 1, 5 мм;

6) ширина проводников питания по контуру платы не менее 5 мм.

Рекомендации по размещению элементов устройства на плате можно свести к нескольким:

1) функциональные узлы должны быть размещены компактно;

2) элементы излучения и приема сигнала должны иметь как можно более короткие провода подключения.

На печатной плате располагаются микросхемы 7805, LM2931, M41T5, 24C64, MC33290, SN7413N, AT89S53 и ЭРЭ с зазором не менее 2 мм для лучшего охлаждения элементов.

Микросхемы расположены на одной стороне печатной платы. Способ установки обеспечивает доступ и замену любой микросхемы.

Для обеспечения помехоустойчивости на плате установлены 12 конденсаторов. Микросхемы, конденсаторы и резисторы распределены равномерно по всей площади печатной платы. На каждую микросхему приходится не менее 0, 05 мкФ. Для увеличения защиты от воздействий внешней среды печатная плата покрыта двойным слоем лака УР-231, который повышает электрическую изоляцию схемы, механическую прочность, хорошо защищает конструкцию от влаги и пыли.

 

ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

 

Важнейшим направлением научно-технического прогресса является автоматизация и механизация производства. Современный этап автоматизации опирается на новейшие достижения в области микроэлектроники, применение вычислительной техники пятого поколения.

Большой вклад в решение проблемы сокращения сроков подготовки производства, запуска новых изделий вносит разработанная в нашей стране единая система технологической подготовки производства (ЕСТПП).

ЕСТПП – установленная стандартом система организации и управления производством, система технологической подготовки производства (ТПП), предусматривающая широкое применение прогрессивных процессов, стандартной технологической оснастки и оборудования, средств автоматизации и механизации производственных процессов (ЕСТПП ГОСТ 14.001 – 73). Основное назначение ЕСТПП заключается в обеспечении единого для всех предприятий порядка выбора и применения методов и средств технологической подготовки производства. Для предприятий, выпускающих электронно-вычислительную аппаратуру (ЭВА) следующие основные задачи ТПП:

1) Обеспечение технологичности конструкции изделия;

2) Разработка технологических процессов;

3) Проектирование и изготовление средств технологического оснащения (нестандартного оборудования, приспособлений, спец. инструмента, нестандартных установок для контроля, испытаний и т.д.);

4) Организация и управление процессом ТПП;

5) Разработка норм времени.

 

Расчёт себестоимости МКТ

 

Себестоимость – сумма затрат в денежной форме, связанных с изготовлением и реализацией продукции. Затраты делятся на прямые и косвенные.

Прямые – непосредственно связаны с выпуском изделия и определяются на основании действующих норм и нормативов. Это затраты на основные и вспомогательные материалы, полуфабрикаты, комплектующие, заработная плата основных производственных рабочих с начислениями.

Косвенные затраты – это расходы на содержание и эксплуатацию оборудования, общецеховые, общезаводские, внепроизводственные.

При расчете полной себестоимости необходимо знать значение каждого вида затрат.

Основные материалы остаются в составе изделия. Это припои, лак и другие.

Вспомогательные материалы – средства для выполнения технологических операций. Это канифоль, спирт, бензин и другие. Элементарная база определяется на основании чертежа изделия.

Основная заработная плата производственных рабочих представляет собой сумму сдельных расценок, определяемых по формуле

РС = ЧТС * tшт ,     (7.5)

где РС – расценка сдельная на операцию, руб;

ЧТС – часовая тарифная ставка разряда выполняемой операции, руб;

tшт – норма штучно – калькуляционного времени (для серийного производства) на данную операцию, час.

7.4.1 Расчет стоимости основных и вспомогательных материалов

Исходными данными для расчёта являются количество паек в изделии, определяемое на основании чертежа, таблицы удельных норм расхода основных и вспомогательных материалов, источником которых является отраслевое предприятие. Количество паек в изделии всего 420, в т.ч. с лужением 109.

Норма расхода материала на одно изделие определяется на основании удельных норм расхода, представленных в таблице 7.4.

 

Таблица 7.4 - Расхода материала

Наименование Ед. изм. Пайка соединений (на 100 выв.) Лужение выводов (на 100 выв.) Покрытие лаком (на 1 м2)
ПОС-61   кг   0, 01   0, 01   -  
Лак УР-231   кг              
3 слоя   кг   -   -   0, 6  
2 слоя   кг   -   -   0, 4  
Канифоль сухая   кг   0, 001   0, 0015   -  
Спирт технический   кг   0, 0065   0, 0065   1, 5  
Бензин «Калоша» кг 0, 04     0, 004     1, 5  
Кисть художественная шт.   0, 01 - 1
Перчатки Пар. 0, 01   0.01   1  
Вата   кг   0, 001   -   -  

 

Для каждого вида материалов расчёт стоимости производится по формуле

 ,       (7.6)

 

где М - стоимость данного материала на одно изделие, руб;

Ц - оптовая цена единицы данного материала, руб;

Н - норма расхода данного вида материала.

Припоя ПОС-61 на пайку выводов и обслуживание требуется:

 

H1 = 0, 01/100*420

H1 = 0, 0838

H2 = 0, 01/100*108

H2 = 0, 0166

 

Сводная норма расхода припоя (Нприп) на одно изделие рассчитывается по формуле

 

Hприп = H1 + H2, (7.7)

Hприп = 0, 0838+0, 0166

Hприп = 0, 1004

 

Расход лака УР-231 зависит от покрываемой поверхности, количества слоев и количества сторон платы. Размер платы 0, 15 * 0, 14.Норма расхода лака при трёхслойном покрытии платы S=0, 021 м² составляет:

 

H3 = 0, 6 * 0, 021 * 2

H3 = 0, 0252

 

Расход канифоли сухой на пайку и лужение выводов:

 

H4 = 0, 001/100*420

H4 = 0, 00838

H5 = 0, 0015/100*108

H5 = 0, 00249

 

Сводная норма расхода канифоли (Нкан) рассчитывается по формуле

 

Hкан = H4 + H5, (7.8)

Hкан = 0, 00838+0, 00249

Hкан = 0, 01087

 

Расход спирта технического на промывку паек, на лужение выводов, на обезжиривание платы перед покрытием лаком, на разведение канифоли:

 

H6 = 0, 0065/100*420

H6 = 0, 05447

H7 = 0, 0065/100*108

H7 = 0, 01079

H8 = 1, 5*0, 021*2

H8 = 0, 063

 

Сводная норма расхода спирта технического (Hсп) рассчитывается по формуле

 

Hсп = H6 + H7 + H8, (7.9)

Hсп = 0, 05447+0, 01079+0, 063

Hсп = 0, 12826

 

Аналогично расчёту спирта технического выполняется расчёт по бензину:

 

H9 = 0, 04/100*420

H9 = 0, 3352

H10 = 0, 004/100*108

H10 =0, 0064

H11 =1, 5*0, 021*2

H11 =0, 063

 

Сводная норма расхода бензина рассчитывается по формуле

 

Hбен. = H9 + H10 + H11, (7.10)

Hбен =0, 3352+0, 0064+0, 063

Hбен =0, 4046

 

Расход кистей художественных при пайке соединений, при покрытии лаком:

 

H12 = 0, 01/100*420

H12 =0, 0838

H13 =1*0, 021*2

H13 =0, 042

 

Сводная норма расхода кистей художественных Hкх рассчитывается по формуле

 

Hкх = H12 + H13, (7.11)

Hкх = 0, 0838+0, 042

Hкх =0, 1258

 

Расход х/б перчаток на пайку выводов, на лужение проводов, покрытие платы лаком:


H14 =0, 01/100*420

H14 =0, 0838

H15 =0, 01/100*108

H15 =0, 0166

H16 =1*0, 021*2

H16 =0, 042

 

Сводная норма расхода перчаток (Нпер) рассчитывается по формуле

 

Hпер = H14 + H15 + H16, (7.12)

Hпер = 0, 0838+0, 0166+0, 042

Hпер = 0, 1424

 

Расход ваты па пайку выводов составляет:

 

H17 = 0, 001/100*420

H17 = 0, 00838

 

Результаты расчёта приведены в таблице 7.5.

 

Таблица 7.5

Наименование Марка ГОСТ Ед. изм. Норма расхода Цена за ед. Сумма, руб.
ПОС-61 21390-76 Кг 0, 1004 440 44, 176
Лак УР-231 ТУ 10863 Кг 0, 0252 600 15, 12
Канифоль 19137-73 Кг 0, 01087 100 1, 087
Спирт технический 17299-71 Кг 0, 12826 40 5, 1304
Бензин «Калоша» ТУ 17248 кг 0, 4046 20 8, 092
Кисть художественная 433-76 шт 0, 1258 7 0, 8806
Перчатки Х/Б - пары 0, 1424 4 0, 5696
Вата 5679-74 Кг 0, 00838 3 0, 02514
ИТОГО         75, 08074
10% от стоимости         7, 508074
Общая стоимость         82, 588814

 

Режим труда и отдыха

Для того чтобы избежать переутомляемости пользователей ПЭВМ необходимо правильно организовать режим труда и отдыха, в соответствии с видом и категорией трудовой деятельности работающих.

Виды трудовой деятельности разделяются на 3 группы:

При выполнении в течение рабочей смены работ, относящихся к разным видам трудовой деятельности, за основную работу с ПЭВМ следует принимать такую, которая занимает не менее 50% времени в течение рабочей смены или рабочего дня.

Для видов трудовой деятельности устанавливается 3 категории тяжести и напряженности работы. В данном случае рассматривается категория Б - работа по вводу информации (по суммарному числу считываемых или вводимых знаков за рабочую смену, но не более 40 000 знаков за смену).

Продолжительность обеденного перерыва определяется действующим законодательством о труде и Правилами внутреннего трудового распорядка предприятия (организации, учреждения).

Для обеспечения оптимальной работоспособности и сохранения здоровья профессиональных пользователей, на протяжении рабочей смены должны устанавливаться регламентированные перерывы.

Время регламентированных перерывов в течение рабочей смены следует устанавливать в зависимости от ее продолжительности, вида и категории трудовой деятельности.

Продолжительность непрерывной работы с ПЭВМ без регламентированного перерыва не должна превышать 2 часов.

При 8-ми часовой рабочей смены и работы на ПЭВМ регламентированные перерывы следует устанавливать через 2 часа от начала рабочей смены и через 2 часа после обеденного перерыва продолжительностью 15 минут каждый.

Во время регламентированных перерывов с целью снижения нервно-эмоционального напряжения, утомления зрительного анализатора, устранения влияния гиподинамии и гипокинезии, предотвращения развития познотонического утомления целесообразно выполнять комплексы упражнений уменьшения отрицательного влияния монотонии целесообразно применять чередование операций осмысленного текста и числовых данных (изменение содержания работ), чередование редактирования текстов и ввода данных (изменение содержания работы).

В случаях возникновения у работающих с ПЭВМ зрительного дискомфорта и других неблагоприятных субъективных ощущений, несмотря на соблюдение санитарно-гигиенических, эргономических требований, режимов труда и отдыха следует применять индивидуальный подход в ограничении времени работ с ПЭВМ коррекцию длительности перерывов для отдыха или проводить смену деятельности на другую, не связанную с использованием ПЭВМ.

Работающим на ПЭВМ с высоким уровнем напряженности во время регламентированных перерывов и в конце рабочего дня показана психологическая разгрузка в специально оборудованных помещениях (комната психологической разгрузки).

 

Освещенность помещений

Помещения с ПЭВМ должны иметь естественное и искусственное освещение.

Естественное освещение должно осуществляться через светопроемы, ориентированные преимущественно на север и северо-восток и обеспечивать коэффициент естественной освещенности (КЕО) не ниже 1.2% в зонах с устойчивым снежным покровом и не ниже 1.5% на остальной территории.

Рабочие места пользователей ПЭВМ по отношению к световым проемам должны располагаться так, чтобы естественный свет падал сбоку, преимущественно слева.

Не допускается расположение рабочих мест пользователей в подвальных помещениях. В случаях производственной необходимости, эксплуатация ПЭВМ в помещениях без естественного освещения может проводиться только по согласованию с органами и учреждениями Государственного санитарно-эпидемиологического надзора.

Искусственное освещение в помещениях эксплуатации ПЭВМ должно осуществляться системой общего равномерного освещения. Допускается применение системы комбинированного освещения (к общему освещению дополнительно устанавливаются светильники местного освещения, предназначенные для освещения зоны расположения документов).

Освещенность на поверхности стола в зоне размещения рабочего документа должна быть 300-500 лк. Допускается установка светильников местного освещения для подсветки документов. Местное освещение не должно создавать бликов на поверхности экрана более 300 лк.

Следует ограничить прямую блесткость от источников освещения, при этом яркость светящихся поверхностей (окна, светильники и др.), находящихся в поле зрения, должна быть не более 200 кд/м2.

Следует ограничить отраженную блесткость на рабочих поверхностях (экран, стол, клавиатура и др.) за счет правильного выбора типов светильников и расположения рабочих мест по отношению к источникам естественного и искусственного освещения, при этом яркость бликов на экране мониторов не должна превышать 40 кд/м2. и яркость потолка, при применении системы отраженного освещения, не должна превышать 200 кд/кв.м.

Показатель ослепленности для источников общего искусственного освещения в производственных помещениях должен быть не более 20, показатель дискомфорта в административно-общественных помещениях не более 40.

Следует ограничивать неравномерность распределения яркости в поле зрения пользователя, при этом соотношение яркости между рабочими поверхностями не должно превышать 3: 1, 5: 1, а между рабочими поверхностями и поверхностями стен и оборудования 10: 1.

В качестве источников света при искусственном освещении должны применяться преимущественно люминесцентные лампы типа ЛБ. При устройстве отраженного освещения в производственных и административно-общественных помещения допускается применение металлогалогенных ламп накаливания до 250Вт. Допускается применение ламп накаливания в светильниках местного освещения.

Общее освещение следует выполнять в виде сплошных или прерывистых линий светильников, расположенных сбоку от рабочих мест, параллельно линии зрения пользователя при расположении мониторов. При периметральном расположении компьютеров линии светильников должны располагаться локализовано над рабочим столом ближе к его переднему краю.

Для освещения помещений с ПЭВМ следует применять светильники серии ЛП036 с зеркализованными решетками, укомплектованные высокочастотными пускорегулирующими аппаратами (ВЧПРА). Допускается применять светильники серии ЕI036 без ВЧПРА только в модификации " Кососвет", также светильники прямого света – П, преимущественно прямого света – Н, преимущественно отраженного света – В. Применение светильников без рассеивателей и экранирующих решеток не допускается.

Яркость светильников общего освещения в зоне углов излучения от 50 до 90 градусов с вертикалью в продольной и поперечной плоскостях должна составлять не более 200 кд/м2, защитный угол светильников должен быть не менее 40 градусов.

Светильники местного освещения должны иметь не просвечивающий отражатель с защитным углом не менее 40 градусов.

Коэффициент запаса (Кз) для осветительных установок общего освещения должен приниматься равным 1, 4.

Коэффициент пульсации не должен превышать 5%, что должно обеспечиваться применением газоразрядных ламп и светильников общего и местного освещения с высокочастотными пускорегулирующими аппаратами (ВЧПРА) для любых типов светильников.

При отсутствии светильников с ВЧПРА, лампы многоламповых светильников или рядом расположенные светильники общего освещения следует включать на разные фазы трехфазной сети.

Для обеспечения нормируемых значений освещенности в помещениях использования ВДТ и ПЭВМ следует проводить чистку стекол оконных рам и светильников не реже двух раз в год, и проводить своевременную замену перегоревших ламп.


ЭКСПЕРЕМЕНТАЛЬНАЯ ЧАСТЬ

Макетная сборка МКТ


Поделиться:



Последнее изменение этой страницы: 2019-10-24; Просмотров: 222; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.154 с.)
Главная | Случайная страница | Обратная связь