Основные виды коллективной защиты. Основные методы защиты от опасных и вредных производственных факторов
Основные виды коллективной защиты. Основные методы защиты от опасных и вредных производственных факторов.
К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации.
Требования к вентиляции. Элементы механической вентиляции (устройство отсоса и раздачи воздуха, фильтры, вентиляторы.
Вентиляция – это обмен воздуха в помещении для удаления избытков теплоты, влаги, вредных и других загрязняющих веществ с целью обеспечения допустимых микроклиматических условий и чистоты воздуха.
Вентиляция подразделяется:
по способу перемещения воздуха – естественная и механическая;
по форме организации воздухообмена – местная и общеобменная;
по типу:
вытяжные (для удаления воздуха) – местные и общие;
приточные (осуществляют подачу воздуха) – местные (воздушные души, завесы, оазисы) и общие (рассеянный или сосредоточенный приток).
Естественная вентиляция. Воздухообмен происходит за счет разности темпера-тур, а следовательно, и удельный вес воздуха внутри производственного помещения и вне его под влиянием теплового напора, а также за счет воздействия ветра (ветровой напор). Действие этих факторов тем больше, чем больше разница температур в верхней и нижней зоне помещения и чем больше высота помещения.
При неорганизованной естественной вентиляции (проветривание) поступление и удаление воздуха происходит через окна, форточки, специальные проемы, неплотности наружных ограждений (инфильтрация).
Организованная (регулируемая) естественная вентиляция или аэрация осуществляется за счет конструктивных элементов здания – аэрационных фонарей. Она может быть улучшена за счет каналов, шахт, функционирующих под действием теплового напора. Для эффективности ветрового напора шахты снабжаются специальными насадками – дефлекторами.
Механическая вентиляция – позволяет производить предварительную обработку приточного воздуха – увлажнение, нагрев, или охлаждение, очистку от пыли, газов и других примесей.
К установкам местной механической вентиляции относятся местные отсосы открытого типа, включающие защитные обеспыливающие кожухи, вытяжные шкафы, бортовые, шарнирно-телескопические (встроенные в рабочие места, инструменты) перемещаемые отсосы, а также вытяжные зонты, укрытия-боксы, камеры и кабины.
Общеобменная вентиляция применяется в тех случаях, когда вредные вещества избыточное тепло или влага выделяются по всему рабочему помещению и удалить их с помощью местных отсосов технически не предоставляется возможным. Принцип действия основан на разбавлении загрязненного, перегретого или переувлажненного воздуха до уровней не превышающих ПДК.
Приточный воздух, как правило, подвергается обработке: подогреву, охлаждению, очистке от пыли иногда увлажнению. При рециркуляции часть воздуха, удаляемого из помещения после очистки от вредных веществ, снова возвращается в помещение.
Кондиционирование воздуха – создание и автоматическое регулирование в помещении заданных параметров микроклимата (санитарно-гигиенических) по температуре, влажности, подвижности воздуха. Иногда необходимо обеспечить ионизацию, дезадорацию, ароматизацию, очистку от бактерий.
Баланс приточного и удаляемого воздуха должен отвечать назначению и конкретным условиям применения. Как правило, приток воздуха и удаляемое его количество должны соответствовать или разница должна быть минимальной. В помещениях цехов изготовления электровакуумных приборов (чистые помещения), необходимо создавать положительных воздушный баланс – т.е. выдавливать избыточный воздух из помещения.
Элементы механической вентиляции (устройства для отсоса и раздачи воздуха, фильтры, вентиляторы, воздуховоды и т.д.).
Основные требования к вентиляции: Баланс притока воздуха. Системы должны быть правильно размещены. Обеспечивать необходимую частоту обмена воздуха. Система состоит из вентилятора, воздуховодов, фильтров для очистки воздуха, воздухозаборных камер, пылеосадочных камер, Установки кондиционирования включает в себя комплекс технических средств включающих в себя фильтрацию, подогрев, охлаждение, осушку, увлажнение воздуха). Воздушные завесы. Водяные завесы. Аспирация.
Кроме вентиляции способами защиты от вредных производственных факторов в воздухе рабочей зоны при запыленности, загазованности являются герметизация процессов, установка водяных и воздушных завес, автоматизация и роботизация процессов, замена токсичных веществ менее токсичными, защита расстоянием, временем, использование СИЗ органов дыхания.
Шум и его физико-гигиеническая характеристика. Шум (звук), инфразвук и ультразвук по своей физической сущности являются акустическими колебаниями. Акустические колебания, лежащие в зоне 16 Гц - 20 кГц, воспринимаются человеком с нормальным слухом, как звук, и называется звуковым. Акустические колебания с частотой менее 16 Гц не воспринимаются ухо человека и называются инфразвуком, выше 20 кГц - ультразвуком.
С гигиенической точки зрения: шум – это нежелательный для человека звук. Шум может вызвать у человека неприятные и даже болевые ощущения. Характеристики звука меняются в очень широких пределах, а поэтому в гигиенической практике принято использовать относительные логарифмические – используют десятую долю специальной единицы – бела – децибел. Две интенсивности силы звука, отличающегося в 10 раз, разнятся на 10 децибел. За уловный ноль логарифмической шкалы принимаются параметры звуковой волны частотой 1000 Гц, вызывающей минимальные слуховые ощущения.
Определяемые относительно их уровни интенсивности звукового давления и мощности звука составили шкалу, удобную для измерения шумов, различающиеся в десятки тысяч раз звуковые давления (например, шум двигателя и шепот) имеют разницу уровней 60 – 80 дБ.
Границы частотного восприятия зависят от возраста человека и состояния органа слуха. У пожилого человека верхняя граница слышимости с возрастом понижается до 12 – 10 кГц.
Область слышимых звуков ограничивается двумя кривыми: нижняя – определяет порог слышимости, т.е. силу едва слышимых звуков различной частоты, верхняя - порог болевого ощущения, т.е. такую силу звука, при которой нормальное звуковое ощущение переходит в болезненное раздражение органа слуха.
Болевым порогом принято считать звук интенсивностью 140 дБ. Субъективно воспринимаемую интенсивность звука называют его громкостью (физической силой звука).
При гигиенической оценке шумы классифицируются по характеру спектра и по временным характеристикам.
По характеру спектра шумы подразделяются на:
• широкополосные, с непрерывным спектром шириной более одной октавы;
• тональные, в спектре которых имеются выраженные дискретные тона.
По временным характеристикам на:
• постоянные, уровень звука которых за 8-часовой рабочий день изменяется во времени не более чем на 5 дБА при изменении по шкале А шумомера;
• непостоянные, уровень звука которых за 8-часовой рабочий день изменяется во времени более чем на 5 дБА при изменении по шкале А шумомера.
Непостоянные шумы подразделяются на:
• колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;
• прерывистые, уровень звука которых ступенчато изменяется на 5 дБА и более, причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 сек и более;
• импульсные, состоящие из одного или нескольких звуковых сигналов, длительностью менее 1 сек. При этом уровни звука в дБА, измеренные соответственно на временных характеристиках " импульс" и " медленно" шумомера, отличается не менее чем на 7 дБА.
Характеристикой непостоянного шума на рабочих местах является интегральный параметр – эквивалентный уровень звука в дБА. Для импульсного шума максимальный уровень звука не должен превышать 125 дБА.
Шум является информационной помехой, неблагоприятно влияет на протекание вредных процессов, способствует утомляемости, снижает работоспособность. При долго-временном воздействии формируется устойчивое повышение слуховых порогов. Среди неблагоприятный воздействий шума на организм человека можно выделить снижение разборчивости речи, развитие утомляемости, снижение производительности труда, проявление шумовой патологии, профзаболеваемости (тугоухости). Шум способен влиять и на изменение артериального давления, на поражение кровеносной системы.
Для снижения уровня шума в производственных помещениях применяются различные методы коллективной защиты: уменьшение уровня шума в источнике возникновения; рациональное размещение оборудования; борьбу с шумом на путях его распространения, в том числе изменения направленности излучения шума, использование звукоизоляции и установку глушителей шума, акустическую обработку поверхностей помещения.
Ультразвук – колебания воздушной среды с частотой более 11, 2 кГц. Источники ультразвука – оборудование, в котором генерируются ультразвуковые колебания для выполнения технологических процессов, технического контроля и измерений
Широкое применение в медицине, в промышленности находит оборудование излучающее ультразвук, при воздействии которого на организм человека возникают изменения в функционировании центральной и периферической нервной системы, сердечно-сосудистой и эндокринной системы, слухового и вестибулярного аппарата. При длительном воздействии низкочастотного ультразвукового оборудования наблюдаются головная боль, головокружение, расстройство сна, раздражительность, ухудшение памяти, повышенная чувствительность к звукам и т.п.
Для снижения воздействия ультразвука на организм человека необходимо:
• снизить интенсивность ультразвука в источнике;
• выбирать частоту ниже 22 кГц, чтобы уменьшить действие высокочастотного шума;
• оснастить установку звукопоглощающими и звукопоглощающими кожухами, применением резонаторных поглотителей;
• размещать ультразвуковое оборудование в звукоизолированных помещениях или кабинах с дистанционным управлением;
• установкой блокировок, при открывании кожухов и защитных экранов;
• применение специального оборудования.
Рабочие места операторов ультразвуковых установок должны, по возможности, быть фиксированы, ограждены ширмами для создания световой и звуковой тени. Для за-щиты от электромагнитных полей рабочих местах операторов необходимо экранировать провода соединения звукового генератора с преобразователем.
Для снижения интенсивности инфразвука, генерируемого технологическими процессами и оборудованием следует достигать за счет применения комплекса мероприятий включающих:
• ослабление мощности в источнике его образования на стадии проектирования, конструирования, проработки архитектурно-планировочных решений, компоновки помещений и расстановки оборудования;
• изоляцию источников инфразвука в отдельные помещения;
• использование кабин наблюдения с дистанционным управлением технологическим процессом;
• уменьшение интенсивности инфразвука в источнике путем введение в технологические цепочки специальных демпфирующих устройств малых линейных размеров, пере-распределяющих спектральный состав инфразвуковых колебаний в область более высоких частот;
• укрытие оборудования кожухами, имеющими повышенную звукоизоляцию в области инфразвуковых частот;
• отделку поверхностей производственных помещений конструкциями, имеющими высокий коэффициент звукопоглощения инфразвуковых частот;
• снижение вибрации оборудования, если инфразвук имеет вибрационное происхождение;
• установку специальных, снижающих инфразвук глушителей на воздухозаборные шахты, выбросные отверстия компрессоров и вентиляторов;
• увеличение звукоизоляции ограждающих конструкций помещений в области инфразвуковых частот путем повышения их жесткости с помощью применения неплоских элементов;
• заделку отверстий и щелей в ограждающих конструкциях производственных помещениях;
• использование глушителей инфразвука интерференционного типа.
Защита от шума в источнике. Акустические средства защиты: звукоизоляция, звукопоглощение, демпфирование, виброизоляция и глушители шума (активные, резонансные и комбинированные). Архитектурно-планировочные и организационно-технические методы защиты от шума. Посадка зеленых насаждений
Нормирование шума осуществляется в соответствии с ГОСТ 12.1.003-83 " Шум. Общие требования безопасности" и СН 2.2.4/2.1.8562-96 " Шум на рабочих местах …."
Нормирование допустимых уровней шума ведется для различных рабочих мест: конструкторских бюро (50 дБ); помещений управления (60); участков точной сборки (65), рабочих мест в производственных помещениях (80дБ).
ГОСТ 12.4.051-87 " ССБТ. СИЗ органов слуха и т.д." противошумные наушники, шлемофоны, наушники, заглушки, вкладыши.
Вибрация и её физико-гигиеническая характеристика (параметры и воздействие на организм человека).
Вибрация – колебательные движения упругих тел, конструкций, сооружений около положения равновесия. Вибрацией – называется механическое колебательное движение, заключающееся в перемещении тела как целого. Вибрация передается только при механическом контакте одного тела с другим. По временной характеристике разделяются на постоянную и непостоянную.
Существуют три основных механизма возбуждения вибрации. Первый связан с силами инерции и криволинейностью пути и вызывает вибрацию наземного транспорта, существенно возрастающую при движении по неровностям дороги. Второй – с неуравновешенными силами ударного действия и вызывает вибрацию при ковке, клепке, штамповке деталей. Третий связан с несовпадением геометрического центра масс вращающейся системы и вызывает вибрацию в механизмах, где есть вращающиеся части.
Вибрация воздействует на человека через опорные поверхности, оказывает влияние на весь организм стоящего или сидящего человека и называется общей. Наблюдается на всех видах транспорта и при работе вблизи источника вибрации (промышленного оборудования) и поэтому подразделяется на транспортную и технологическую (станки, оборудование).
Вибрация воздействующая только на определенную часть тела человека (руку) – называется локальной. Локальная возникает при использовании ручных механизмов (отбойный механизм, ручная дрель, бензопилы, шлифовальные машины и т.п.). Локальная вибрация может передаваться на руки станочника, например, при работе на заточном, сверлильном станках.
Особым видом вибрации являются укачивания и вращения.
Долговременное общей вибрации на тракториста может привести в возникновению нежелательных последствий на позвоночнике. Общая вибрация вызывает варикозное расширение вен на ногах, геморрой, ишемическую болезнь сердца, гипертонию.
Чрезмерное воздействие локальной вибрации может привести к заболеванию кровеносной, нервной систем, мышц, костей и суставов верхних конечностей, так называемую виброболезнь.
Укачивание – " морская болезнь" - происходит при вертикальном трансляционном колебательном движении (качке на судне) с частотой около 0, 2 Гц.
Вибрация нормируется для каждого установленного направления в каждой октавной полосе частот. Гигиенические нормы вибрации установлены исходя из того, что рабочие подвержены воздействию вибрации в течение смены продолжительностью 8 часов.
Средства и методы защиты от вибрации: вибродемпфирование, динамическое виброгашение, активная и пассивная виброизоляция (прокладки, пружины, виброперчатки, специальные кресла у трактористов и т.д.).
Защита от вибрации осуществляется: техническими мероприятиями (выбор, изменение технологического процесса, снижение динамических нагрузок, замена кривошипных механизмов на равномерно вращающиеся, балансировка вращающихся масс, манипуляторы); организационные (ограничение числа рабочих); санитарно-гигиенические (СИЗ виброгасящие рукавицы, нагрудники, костюмы и обувь). Опорная виброизоляция, подвесная виброизоляция, через упругую связь, резиновые виброизоляторы, пробки, стальные пружины, прокладки из войлока, асбеста. Лечебно-профилактические мероприятия: массажи, теплые ванночки, витаминизация организма способствуют снижению вредоносного воздействия вибрации на организм человека.
Пассивная - виброизоляция рабочего места.
ГОСТ 12.1.012-90 " ССБТ. Вибрационная безопасность. Общие требования" и СН 2.2.4/2.1.8.566-96.
Роль света в жизни человека. Основные светотехнические понятия и величины. Гигиенические требования к освещению. Цвет и функциональная окраска. Виды производственного освещения. Источники света. Нормирование и контроль освещения. Ультрафиолетовое облучение, его значение и организация на производстве. Средства защиты органов зрения.
Искусственное и естественное освещение.
Производственное освещение характеризуется количественными и качественными показателями. Светящиеся природные и искусственно созданные тела испускают электромагнитные излучения с различными длинами волн, но только излучения с длиной волн от 380 до 780 нм вызывают у нас ощущения света и цвета. Поэтому светом называют характеристику светового стимула. Создающего определенное зрительное ощущение, а излучение указанного диапазона длин волн – видимой частью спектра. При воздействии на глаз излучений с длиной волны меньше 380 нм (инфракрасное излучение) и более 780 нм (ультрафиолетовое излучение), которые световых и цветовых ощущений у человека не вызывают. Если тело испускает световой поток, содержащий весь диапазон излучений от 380 до 780 нм, и притом мощность излучений одинакова, цвет этого тела воспринимается как белый. Пропуская через призму белый цвет, его можно разложить на спектр монохромных излучений, которые вызывают ощущение различных цветов: красный - оранжевый – желтый – зеленый – голубой – синий - фиолетовый. Разделение чисто условное, глаз воспринимает гораздо больше цветов и оттенков. Большинство предметов мы видим в отраженном свете. Большинство предметов не имеет собственного свечения. Собственного света они не излучают. Они отражают свет Солнца. Цвет несветящихся непрозрачных предметов обусловлен спектральным составом отраженного от них светового потока, а прозрачных предметов – составом прошедшего через них излучения.
Практически каждый вид деятельности связан с необходимостью различения какого-либо объекта. Недостаточная освещенность рабочей зоны и пониженная контрастность вызывают напряженность зрительного органа, что может привести к нарушению зрения.
В условиях, когда общая освещенность отсутствует, выполнение работ невозможно без индивидуальных головных или ручных светильников, местного освещения. Чрезмерная яркость (дуга электросварки) может привести к ослеплению. Человеческий глаз защищается от поражения слишком ярким светом с помощью мигательного рефлекса, поворота глаз, движения головы. Ослепление от сварочной дуги может быть преодолено с помощью СИЗ (защитные очки со светофильтрами).
Для создания нормальной световой среды применяются разные системы освещения
Количественные: световой поток мощность световой энергии, измеряется в люменах (лм); сила света – пространственная плотность светового потока (в канделах, кд); освещенность - поверхностная плотность светового потока (в люксах, лк); яркость поверхности – светотехническая величина воспринимаемая глазом.
По функциональному назначению искусственное освещение делится на рабочее (равномерное или локальное), комбинированное (общее и местное); аварийное, специальное, охранное, дежурное, эвакуационное, бактерицидное и др.
Для обеспечения нормальной работы органа зрения производственное освещение нормируется в зависимости от вида освещения (естественное, искусственное – общее или комбинированное, совмещенное и разряда зрительной работы.
Естественное – освещение помещений через световые проемы (боковое, верхнее, комбинированное).
Рабочее – предназначено для освещения производственных помещений, мест про-хода людей, проезда транспортных средств.
Аварийное – для обеспечения эвакуации людей при внезапном отключении источника тока, временного продолжения работы для обеспечения работы, предупреждения травматизма и аварий, где недопустимо прекращение работ.
Охранное – вдоль границ охраняемых в ночное время территорий предприятий и организаций.
Дежурное – освещение в нерабочее время.
Общее – светильники размещены в верхней зоне помещений.
Местное – дополнительное к общему с концентрированным световым потоком на рабочих местах.
Нормы освещенности по СНиП 23-05-95
В зависимости от точности работы (наивысшей, очень высокой, высокой точности, средней точности, малой точности грубая точность и т.п. освещенность должна составлять от 200 до 1200 люкс.
Источники искусственного освещения:
газоразрядные лампы – имеют высокую световую отдачу, (до 100 лм/Вт) и большой срок службы (10000 – 14000 час.). Световой поток близок по спектру к естественному, однако имеет недостаток – пульсация;
лампы накаливания во избежание пожаров должны быть заключены в плафоны.
Лазеры – устройства с когерентным почти не рассеивающимся излучением. Лазерное излучение в настоящее время находит более широкое применение в промышленности, медицине (использование лазерного скальпеля при хирургических операциях в офтальмологии, онкологии, дерматологии, физиотерапии).
При длительной работе с лазерными установками отмечаются жалобы на утомляемость зрительного анализатора, режущих болей в области глазного яблока, слезотечение, непереносимость яркого света, изменение кожного покрова.
При эксплуатации лазерных установок могут возникнуть следующие вредные и опасные производственные факторы:
• само лазерное излучение (прямое или отраженное);
• сопутствующие ультрафиолетовое, инфракрасное излучения;
• токсичные газы и пары от лазерных систем с прокачкой, от хладоагентов и др.;
• повышенная температура;
• опасность взрыва в система лазерной накачки;
• опасное высокое напряжение в цепях управления и питания;
• электромагнитное, радиочастотное излучение;
• шум, вибрация.
Биологическое воздействие лазерного излучения на организм человека определяется механизмом взаимодействия излучения с тканями (тепловой, фотохимической, ударно-акустической) и завит от длины волны излучения, длительности импульса, частоты следования импульса, площади облучаемого участка.
Лазерное излучение с длиной волны от 380 до 1400 нм представляет наибольшую для сетчатой оболочки глаза. Повреждение поверхности кожи может быть вызвано лазерным излучением любой длины волны спектрального анализа диапазона (180 – 510 нм).
По степени опасности генерируемого излучения лазеры подразделяются на четыре класса:
I – полностью безопасны;
II – выходное излучение опасно для глаз и кожи; отраженное - не опасно;
III – опасность представляет не только выходное, но и отраженное излучение для глаз на расстоянии 10 см от отражающей поверхности;
IY – диффузно отраженное излучение представляет опасность для глаз и кожи на рас-стоянии 10 см от отражающей поверхности.
Предупредительный дозиметрический контроль заключается в определении максимальных уровней энергетических параметров лазерных излучений на границе рабочей зоны. Индивидуальный дозиметрический контроль заключается в измерении уровней параметров излучения воздействующих на глаза кожу конкретного работника в течение рабочего дня.
Безопасность на рабочих местах должна достигаться за счет конструкции лазерной установки. Для предотвращения пожаров на лазерах IY класса в качестве ограничителей следует применять хорошо охлаждаемые неплоские металлические мишени или огне-упорные материалы достаточной толщины. Безопасность труда при работе с открытыми лазерными установками достигается за счет применения средств индивидуальной защиты.
При работе с лазерной установкой обслуживающему персоналу запрещается осуществлять наблюдение прямого или отраженного лазерного излучения при эксплуатации лазеров II - IY класса без средств индивидуальной защиты; размещать в зоне лазерного пучка предметы могущие вызвать лазерное отражение луча.
Ионизирующие – излучения корпускул (элементарных частиц) и потоки фотонов (квантов электромагнитного поля), которые при движении через вещество ионизируют его атомы и молекулы.
Наиболее известны альфа-частиц (ядра гелия состоящие из двух протонов и двух нейтронов), бета-частицы (электрон) и гамма-излучение (кванты электромагнитного поля определенного диапазона частот).
Природное ионизирующее излучение повсюду, как в виде космических лучей, так и в воздухе в виде радона. Проникает в организм человека вместе с пищей, водой. Естественный радиоактивный фон существовал на Земле всегда – природная радиация.
Физическое явление радиоактивности было открыто в 1896 году и стало применяться широко в различных отраслях экономики, в промышленности, медицине (атомные электростанции, рентгеновская аппаратура, приборы пожарной сигнализации и др.)
Ионизирующее излучение оказывает на организм человека: соматическое (острая лучевая болезнь, хроническая лучевая болезнь, местные лучевые повреждения; сомато-стохастические (злокачественные опухали, нарушение развития плода, сокращение продолжительности жизни) и генетические (генные мутации, аберрация).
Защищаться от внешнего ионизирующего излучения можно установив на пути движения излучений защитный экран, применять СИЗ (специальная одежда от альфа- и бета-излучения – костюмы, перчатки, капюшоны, сапоги, очки, свинцовые фартуки).
Внутреннее облучение связано с попаданием в организм человека радиоактивных веществ и оно во много раз опаснее внешнего облучения. Уменьшения воздействия можно добиться за счет применения СИЗ органов дыхания, специального рациона питания.
Закрытыми источниками ионизирующих излучений называются источники, устройство которых исключают попадание радиоактивных веществ в воздух рабочей зоны. Защитные мероприятия для таких источников заключаются в уменьшении интенсивности дозы излучения за счет установки защитных экранов (просвинцованное стекло, бе-тон, металл, барритобетон, вода), защитой количеством применяемых материалов, временем и расстоянием.
Дозиметрический контроль. НРБ -99, Основные санитарные правила обеспечения радиоактивной безопасности (ОСПОРБ –99); ГОСТ 12.4.120-83 " СИЗ от ионизирующих излучения. Общие требования"
Неионизирующее излучение – объединяет все излучения и поля электромагнитного спектра, у которых не хватает энергии для ионизации материи – это излучение с длиной волны более 1000 нм и энергией меньше 10 кэВ, заведомо недостаточной чтобы ионизировать вещество.
Ультрафиолетовое излучение представляет собой форму оптического излучения с более короткой длиной волны и большей энергией фотонов (частиц излучения), чем видимый свет. Общеизвестное действие ультрафиолетового излучения – это солнечный ожог. Для защиты от его воздействия применяется спецодежда, шляпы с полями, солнце-защитные кремы.
При проведении электросварочных работ ультафиолетовое излучение сварочной дуги вызывает ожог глаз (фотоавтольмия). При длительном воздействии может привести к отслоению сетчатки глаза, возникновению катаракты, ускоряет старение кожи, развитие рака кожи.
СН 4557-88 " Санитарные нормы ультрафиолетового излучения в производственных помещения"
Инфракрасное – это тепловое излучение испускается всеми телами. Оно существенно при высокой температуре поверхности тела (расплавленный металл, лампы накаливания, термически обрабатываемые поверхности и т.п.). Инфракрасное излучение имеет длину волны от 780 нм до 1 мм. Поскольку инфракрасное излучение не проникает глубоко в ткани организма то основными объектами его воздействия являются кожа и глаза. Длительное воздействие инфракрасного излучения на глаза может привести к помутнению хрусталика глаза (катаракта). Средства защиты глаз от этого излучения – защитные очки.
В пределе нулевой частоты электромагнитное поле расщепляется на статические и магнитные поля. Для защиты от их вредного воздействия необходимо применять меры защиты путем заземления, экранирования источников поля либо работника, применять антистатическую спецодежду и спецобувь. При работах с источниками постоянных магнитных полей применяются специальные антистатические СИЗ не позволяющие накапливаться зарядам большой мощности, путем использования манипуляторов, автоматизации, роботизации производственных процессов.
При работах в трансформаторных подстанциях, в помещениях с распределительными устройствами широко применяются передвижные и переносные экраны, экранирующие комплекты одежды, работа с пультов дистанционного управления.
Коллективные и индивидуальные средства защиты.
Маска сварщика. Защитные очки. Спецодежда, спецобувь, кремы, мази, молоко, питание.
СИЗ органов дыхания: противогазы, респираторы, марлевые повязки;
СИЗ органов слуха: бируши; наушники
СИЗ органов зрения: очки; светофильтры.
Технические мероприятия: герметизация вредного производственного процесса; автоматизация; роботизация. Замена вредных веществ менее токсичными.
Техническое обеспечение безопасности технологических процессов.
Технические мероприятия: герметизация вредного производственного процесса; автоматизация; роботизация, замена вредных веществ менее токсичными, защита расстоянием, экранирование, недоступность, нейтрализация, герметизация
Оборудование опасного оборудования системами блокировок: механических, электрических;
Системами автоматической сигнализации
Системами дозиметрического контроля уровня запыленности, загазованности; взрывоопасных концентраций
Система организационно-технических, санитарно-гигиенических мероприятий, обеспечивающих безопасность труда.
Кроме перечисленных выше мероприятий следует отнести и такие мероприятия, как:
предварительные и периодические медицинские осмотры состояния здоровья;
обеспечение профилактическим спецпитанием
обеспечение санитарно-бытовыми помещениями и устройствами (душевые, умывальные, респираторные, централизованные стирка и ремонт спецодежды и др.);
профилактории, ингалятории
обучение безопасным и безвредным методам работы.
Главными причинами электротравматизма являются:
1. Появление напряжения там, где в нормальных условиях не должно быть. Такие случаи встречаются в практике довольно часто. Под напряжением могут оказаться корпуса оборудования, металлические конструкции, строительные элементы зданий (полы, стены) и т. п. Чаще всего это происходит вследствие повреждения изоляции кабелей, проводов или обмоток электродвигателей и электрического соединения токоведущих частей с указанными конструкциями.
2. Возможность прикосновения к неизолированным токо-ведущим частям.
3. Образование электрической дуги между человеком и токоведущими частями электроустановки напряжением свыше 1000 в.
4. Несогласованные и ошибочные действия персонала. Например, подача напряжения на установку; где работают люди.
Основными условиями, обеспечивающими устранение электротравм являются:
а) правильное устройство электроустановок;
б) обученность электроперсонала;
в) соблюдение правил по безопасному обслуживанию электроустановок;
г) надзор за производством работ в электроустановках.
Порядок разработки и содержание планов ликвидации аварий
Идентификация опасностей будущего (планируемого) производства заложена требованиями законодательства в области промышленной безопасности и охраны труда путем включения требований о наличии в проектной документации соответствующих разделов. В ряде случаев, установленных Федеральным законом “О промышленной безопасности опасных производственных объектов”, оценка рисков аварий приводится в составе декларации промышленной безопасности.
Исходя из оценки рисков аварий, составляются планы ликвидации аварий (ПЛА) и организуется обучение работников действиям по каждой конкретной аварийной ситуации.
ПЛА составляется в целях определения возможных сценариев возникновения и развития аварий, конкретизации технических средств и действий производственного персонала и спецподразделений по локализации аварий.
План ликвидации составляют на аварии, которые характерны (наиболее вероятны) для данного объекта. Перечень таких аварий составляется в рамках проведения идентификации и оценки рисков и разработки декларации промышленной безопасности.
В ПЛА должны предусматриваться:
- возможные аварии, места их возникновения и условия, опасные для жизни людей;
- мероприятия по спасению людей, застигнутых аварией;
- мероприятия по ликвидации аварий в начальной стадии их возникновения, а также первоочередные действия производственного персонала при возникновении аварий;
- места нахождения средств для спасения людей и ликвидации аварий;
- порядок взаимодействия с газоспасательными, пожарными и аварийно-спасательными формированиями.
ПЛА должен содержать:
- оперативную часть, в которой должны быть предусмотрены все виды возможных аварий на данном объекте, определены мероприятия по спасению людей и ликвидации аварии, а также лица, ответственные за выполнение мероприятий, и исполнители, места нахождения средств для спасения людей и ликвидации аварий, действия газоспасателей, пожарных и других подразделений;
- распределение обязанностей между отдельными лицами, участвующими в ликвидации аварии;
- список, номера телефонов, адреса должностных лиц и учреждений, которые должны быть немедленно извещены об аварии;
- схему расположения технологического оборудования и коммуникаций с указанием вводов и выводов рабочей среды, задвижек, кранов, вентилей, рубильников и аварийных кнопок;
- схему размещения стационарных средств пожаротушения, шкафов с газозащитной аппаратурой, СИЗ, инструментов и материалов, находящихся в аварийных шкафах (помещениях) и используемых в случаях аварии, с указанием их количества и основной характеристики, мест расположения пожарных извещателей и телефонов.
Безопасность работников во время аварийной ситуации во многом (если не в основном) зависит от того, насколько они адекватно реагируют на ту или иную ситуацию, насколько четко знают, что делать (и чего не делать), куда бежать, кому сообщать и т.д.
Для отработки практических навыков и действий в условиях аварийной ситуации регулярно по плану ликвидации аварий проводятся учебно-тренировочные занятия с записью в журнале с оценкой каждого работника. Как правило, в них принимают участие и специалисты аварийно-спасательных формирований для отработки согласованных совместных действий. С учетом специфики производства занятия проводятся с различной периодичностью, определенной в правилах безопасности для данной отрасли.
Другим не менее важным моментом является то, что до сведения всех подрядчиков, выполняющих работы в условиях действующего производства, должен быть доведен порядок их действий в случае аварийной ситуации. Реализация этого необходимого для обеспечения безопасности работников подрядчика может быть возложена либо на отдел охраны труда и промышленной безопасности (в рамках вводного проведения инструктажа), либо руководителей структурных подразделений (цехов, производств).