Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Основные цели и задачи Стратегии
Основная цель Стратегии - создание нового конкурентоспособного облика электронной промышленности на основе оптимизации состава электронных организаций и производственных мощностей, реконструкции и технического перевооружения, развития новых мощностей и процессов, совершенствование нормативно-правовой базы с учетом реальных рыночных секторов мирового и отечественного рынка, занятых отечественной отраслью. Каждый из трех периодов реализации Стратегии имеет свою специфику, цель, задачи, количественные значения показателей и индикаторов, ресурсное обеспечение, но при этом сохраняются системные цели и задачи Стратегии. Основная цель первого этапа реализации Стратегии (2007-2011 годы) - стабилизация устойчивых темпов развития электронной промышленности, создание новой инфраструктуры отрасли (дизайн-центры, центр фотошаблонов, кремниевые фабрики, интегрированные структуры), наращивание номенклатуры и объемов отечественной электронной компонентной базы. В этот период основные усилия должны быть направлены на решение следующих задач: - ликвидация критического технологического отставания электронной промышленности от мирового уровня; - разработка новых критических технологий (научный задел) по приоритетным направлениям ЭКБ, позволяющих осуществить выпуск новой электронной компонентной базы; - оптимизация действующих производственных мощностей с целью интеграции и специализации организаций в рамках единой инфраструктуры отрасли; - создание и внедрение новой структуры проектирования и создания перспективной электронной компонентной базы, конкурентоспособной на рынке. Годовой объем выпуска конечной продукции электронной промышленности в 2011 году должен составить 45 млрд. долларов. Реализация целей и задач первого этапа развития Стратегии требует: - реформирование структуры электронной промышленности, оптимизация методов и механизмов государственного управления и государственно- частного партнерства; - реконструкции и технического перевооружения электронных производств; - развития сети межотраслевых и отраслевых центров проектирования ЭКБ; - приоритетного развития научно-производственной базы СВЧ-электроники и комплексированных СВЧ приборов; - приоритетного развития разработок и производства радиационно-стойкой ЭКБ; - приоритетного развития микросистемотехники; - приоритетного развития микроэлектроники; - приоритетного развития электронных материалов и структур; - принятие мер по изменению существующего законодательства, обеспечивающих реализацию мероприятий данной Стратегии. - Реформирование структуры электронной промышленности, оптимизация методов и механизмов государственного управления и государственно-частного партнерства. Несмотря на определенные изменения, произошедшие в отрасли в последние 10-12 лет, электронная промышленность сохраняет во многом заложенную в период " мобилизационной экономики" полипродуктовую структуру обеспечения разработок и производства электронной продукции по принципу " натурального хозяйства". При переходе к рыночной экономике это привело к образованию у организаций излишних и неиспользуемых производственных мощностей, обуславливающих большие издержки производства, что и стало для многих организаций главной причиной их неустойчивого финансового положения. Улучшение экономического состояния отрасли возможно только при переходе ее на современные модели бизнеса, учитывающие рыночные отношения и предусматривающие углубление в специализации и расширение интеграции определенных организаций. В мировой практике существует две принципиально разные модели бизнеса в электронике: - интегрированный изготовитель продукции, поддерживающий все стадии создания, производства и сбыта продукции; - разделение функций проектирования, организации бизнеса и производства продукции (fabless-foundry). Вторая модель бизнеса все больше развивается в мире, так как позволяет отдельным организациям профессионально специализироваться на проблемах своего направления, отдавая несвойственные себе функции другим специализированным организациям. При этом каждая из специализированных организаций обеспечивает более низкую себестоимость продукции по сравнению с неспециализированными аналогами. Исторически сложилось, что отечественная электронная промышленность преимущественно использует первую модель бизнеса. Однако следование этой модели предполагает наличие значительных финансовых ресурсов, необходимых для поддержки всей инфраструктуры такого бизнеса на протяжении всего жизненного цикла, тогда как создание специализированных фирм по каждому направлению требует значительно меньше финансовых ресурсов и обеспечивает более высокую оборачиваемость инвестиций. Именно это обстоятельство и делает вторую модель более привлекательной для развития бизнеса в электронике, которая является чрезвычайно капиталоемкой отраслью. Поскольку удельные затраты на производство уменьшаются с ростом объемов выпуска, заводы контрактного производства (foundry) обеспечивают экономические преимущества перед неспециализированными организациями с меньшим объемом выпуска. В свою очередь, создание специализированных дизайн-центров для организаций не требует большого объема инвестиций и обеспечивает быстрое вхождение на рынок с собственной продукцией, изготавливаемой на foundry. Необходимо широко внедрить такую модель бизнеса в отечественной электронной промышленности с использованием как зарубежного, так и отечественного контрактного производства. С этой целью необходимо создать и развить сеть центров проектирования ЭКБ, в том числе в организациях -системных интеграторах. Необходимо поставить задачу и проинвестировать создание нескольких тысяч рабочих мест в новых дизайн-центрах и освоить современную методологию проектирования. Для решения этой проблемы потребуются серьезные инвестиции, так как основной объем средств будет потрачен на закупку аппаратных средств и лицензионного программного обеспечения, а также подготовку кадров. Параллельно с организацией сети дизайн-центров необходимо создать централизованный архив фотошаблонов, а также собственные производственные мощности по их изготовлению, так как именно на фотошаблонах находится конечная информация спроектированной элементной базы. Кроме того, с целью ускорения процесса разработки и доведения его до требований рынка (6 месяцев для коммерческой продукции, 2-3 года для продукции специального назначения) необходимо внедрить систему регистрации и накопления интеллектуальной собственности в сети дизайн-центров и организации ее повторного использования на лицензионной основе. Это должен быть государственный центр контроля за выполнением разработок и их использованием. Переход промышленности к рассмотренной модели бизнеса обеспечит ее реструктуризацию в соответствии с современными требованиями и позволит сократить сроки выхода на рынок перспективной коммерческой продукции, а, значит, существенно увеличит объем сбыта и прибыли отрасли. - Реконструкция и техническое перевооружение электронных производств. Реконструкция и техническое перевооружение производственной базы должны выполняться с учетом перехода к новой модели структуры бизнеса (fabless-foundry). Однако полностью игнорировать исторически сложившуюся базу интегрированных изготовителей в отечественной электронной промышленности было бы нецелесообразно - в этих организациях имеется большой накопленный опыт такого производства. Основная задача этих организаций обеспечить серийный выпуск ЭКБ, необходимой для выполнения Государственного оборонного заказа. Поэтому рациональной была бы первоочередная глубокая модернизация производства ведущих организаций с применением современных технологий и оборудования, не предъявляющих повышенных требований к технологическому обеспечению, которое может реализовываться только строительством новых производств, а не модернизацией действующих. Такая модернизация в микроэлектронике до предельных уровней 0, 35-0, 25 мкм может быть проведена на имеющейся технологической базе и не потребует глубокой модернизации систем технологического обеспечения и капитального строительства. Следует учитывать, что строительство только одного современного микроэлектронного производства уровня 0, 13-0, 09 мкм потребовало бы инвестиций около 1, 5-2, 5 млрд. долларов, что вдвое превосходит все запрашиваемые средства на программу развития ЭКБ в целом. При проведении техперевооружения электронных производств должны быть учтены как потребность в сохранении производств ЭКБ, используемой в аппаратуре с длительным жизненным циклом с учетом ее возможной модернизации, так и необходимость восстановления утерянных производств ЭКБ. Альтернативным направлением решения проблемы обеспечения функционирования подобной аппаратуры на всех этапах ее жизненного цикла является создание необходимых страховых запасов ЭКБ. Освоение технологического уровня 0, 09 мкм и менее требует строительства новых специальных производств с дорогостоящей инженерной инфраструктурой, очищающей технологическую атмосферу от загрязнений на химическом (молекулярном) уровне. В настоящее время такое производство можно организовывать только в альянсе с зарубежными партнерами в рамках международного проекта. Реализация продукции таких фабрик носит глобальный характер и, как правило, не может быть обеспечена только внутренним рынком. Следует иметь в виду, что освоение каждого нового технологического уровня требует соответствующих изменений в метрологическом обеспечении микроэлектронного производства. Утеря собственного спецтехнологического машиностроения вызывает необходимость приобретения всего комплекта технологического и контрольного оборудования за рубежом. Стоимость его чрезвычайно высока, она составляет величину порядка млн. долларов за единицу и доходит до значений 8 - 10 млн. долларов за отдельные, но самые главные виды оборудования (фотолитографические установки). Оценки показывают, что стоимость полного минимального набора оборудования для технологического уровня 0, 13 мкм составляет около 220 - 260 млн. долларов (стоимость полного комплекта оборудования стандартного производства уровня 0, 13 мкм около 1, 2 - 1, 4 млрд. долларов (50 - 55% от стоимости всей фабрики ~ 2, 5 млрд. долларов). Таким образом минимальные инвестиции на организацию только пилотного (опытного) производства уровня 0, 13 мкм превысят значение 300-350 млн. долларов (еще около 80 млн. долларов на строительство и инженерное обеспечение линейки, удельная стоимость чистых площадей подобного класса превышает значение 15 тыс. долларов/м2). Практически все организации микроэлектроники акционированы, и как следствие, они выбирают ту технико-экономическую стратегию развития (на первых этапах - стратегию выживания), которая может обеспечить максимальную прибыль и, естественно, не ориентируется на государственные интересы. Российские инвесторы еще не готовы вкладывать деньги в отечественную микроэлектронику в тех объемах, которые необходимы для подъема высокотехнологичного производства, а иностранные этого делать не будут, так как это противоречит интересам завоевания российского рынка. Ситуация с развитием проектирования и производства ЭКБ осложняется отсутствием мощных потребителей на внутреннем рынке и низкой конкурентоспособностью создаваемой ЭКБ на внешнем. Таким образом, продуктовая цепочка " электронные технологии - ЭКБ - радиоэлектронная аппаратура" не имеет главных стимулов развития из-за ограничений в потребности в высшем звене и значительного объема необходимых инвестиций в нижнем. У государства в сложившейся ситуации реально сохраняются два рычага управления: бюджетные ассигнования и рынок госзакупок. Пользуясь этими рычагами, государство должно обеспечить реализацию своих интересов, создавая одинаковые правила и условия при взаимодействии с бизнес-структурами, реально владеющими активами микроэлектронных производств. Это должно стать основой будущего государственно-частного партнерства. Необходимо обратить внимание и на межгосударственные формы партнерства. Принимая во внимание важность научно-технического и экономического взаимодействия с Республикой Беларусь как стратегического и политического партнера и положительный опыт совместных программ по спецтехнологическому оборудованию и технологиям микроэлектроники, следует расширить состав совместных межгосударственных российско-белорусских программ по разработке специальной ЭКБ (силовая и автомобильная электроника; СБИС для цифрового телевидения, систем безопасности, информационных систем; микросистемная техника и сенсоры и т.д.) для задач реализации совместных крупномасштабных проектов и интеграции экономик. - Развитие сети межотраслевых и отраслевых центров проектирования. Развитие сети отраслевых и межотраслевых центров проектирования решает задачу по обеспечению создания стратегически значимых радиоэлектронных систем, а также массовой гражданской аппаратуры, требующей разработки в короткие сроки сотен типов микросхем: универсальных (процессоров, схем памяти, программируемых матриц и др.) и специализированных, в том числе уровня " система на кристалле" сложностью в десятки миллионов компонентов, требующих совместных усилий разработчиков и изготовителей как радиоэлектронных систем, так и микроэлектронных компонентов. Причем количество дизайн-центров должно быть достаточным для загрузки как действующих модернизированных, так и вновь создаваемых мощностей. Должно быть обеспечено создание проектной инфраструктуры, включающей: - межотраслевые и отраслевые центры проектирования, центры системного уровня проектирования при крупных аппаратостроительных организациях (интегрированных структурах); - дизайн-центры проектирования ЭКБ; - межотраслевой центр проектирования, каталогизации и изготовления фотошаблонов. Созданных и достаточно успешно функционирующих в настоящее время центров проектирования ЭКБ (всего порядка 10) явно недостаточно для решения перечисленных проблем. Оценки показывают, что количество центров проектирования для решения задачи формирования новой базы проектирования основных видов ЭКБ и обеспечения рациональной региональной сети центров должно составлять около 60-70 центров. В ходе реализации подпрограммы " Развитие электронной компонентной базы" в течение 2007-2011 гг. планируется создать разветвленную сеть центров проектирования (30-35 новых центров), в том числе 6-7 центров системного уровня при ведущих организациях Роспрома, Росатома и Роскосмоса, Минобразования, а также Межотраслевой центр проектирования, каталогизации и изготовления фотошаблонов. При этом созданная инфраструктура должна обеспечить завоевание конкурентоспособных позиций, позволяющих достигнуть заданного в Стратегии роста объемов продаж в следующих секторах мирового рынка: - Приоритетное развитие научно-производственной базы твердотельной и вакуумной СВЧ-электроники. Отличительной особенностью современного состояния СВЧ-техники в стране является то, что достигнутый технический уровень по ряду ключевых направлений (вакуумная СВЧ-техника) не уступает мировому, а в ряде случаев превосходит его, и разработанные изделия в основном являются конкурентоспособными. Основными составляющими рынка СВЧ-изделий являются: - продукция, изготавливаемая в интересах Минобороны России и других заказчиков (радиолокационная аппаратура, включая АФАР, военная связь, в том числе спутниковая, аппаратура для антитеррористической и радиоэлектронной борьбы); - продукция промышленного и бытового назначения (аэродромные и трассовые радиолокационные станции, спутниковая и наземная связь, цифровое телевидение, промышленная и бытовая электроника); - продукция, изготавливаемая по международным контрактам (в основном военного назначения). Вместе с тем, дальнейшее развитие отечественной СВЧ-техники сдерживается наметившимся отставанием в области твердотельной СВЧ-электроники, связанным с отсутствием современного технологического оборудования. Чтобы не уступить приоритет зарубежным производителям, необходим уровень 0, 35-0, 18 мкм для кремниевой технологии и 0, 1-0, 2 мкм для приборов на арсениде галлия и широкозонных полупроводниках. Для достижения и развития нового уровня СВЧ-электроники в первую очередь необходимо сконцентрировать финансовые, технические и кадровые ресурсы в наиболее технологически развитых базовых организациях. Для поддержания критических технологий, способных обеспечить разработку и производство СВЧ- приборов в интересах перспективных систем вооружений и для гражданских применений, эти организации остро нуждаются в модернизации и техническом перевооружении действующих производственных мощностей. В отличие от микроэлектронных производств, ведущие центры СВЧ-электроники остались в государственной собственности. Государство имеет полный контроль над этими центрами. Наличие устойчивого рынка внутри страны и конкурентоспособность отечественных изделий СВЧ-техники на мировом рынке делает возможным получение максимального экономического и технического эффекта от реализации инвестиционных проектов по модернизации центров СВЧ-электроники и обеспечения развития производства исходных материалов и структур (" кремний на изоляторе", гетероструктуры). Необходимо предусмотреть дальнейшее развитие работ в институтах РАН, где имеется значительный задел по технологии СВЧ-приборов на наногетероструктурах. Существенным является поддержание высокого уровня технологий СВЧ-приборов и создание нового поколения высоконадежных вакуумных мощных СВЧ-приборов и высокоэффективных гибридных малогабаритных СВЧ-модулей с улучшенными массогабаритными характеристиками. В области вакуумной СВЧ-электроники необходимо в первую очередь развивать те технологии которые обеспечат мировое лидерство. Прежде всего это относится к СВЧ-электронике больших мощностей. - Приоритетное развитие разработок и производства радиационно-стойкой ЭКБ. Развитие специализированных разработок и производства радиационно-стойкой электронной компонентной базы в интересах организаций и организаций Росатома, Роскосмоса, Минобороны России и Роспрома необходимо для поддержания паритета в области стратегических ядерных вооружений и обеспечения возрастающей роли космических средств в системах управления и передачи данных как государственных, так и корпоративных структур, а также обеспечения функционирования объектов атомной энергетики. Ввиду стратегической важности данного направления целесообразно сохранить и развивать специализированные центры разработок и производства по этому направлению в Нижнем Новгороде и Москве, в том числе в Зеленограде. При этом должна обеспечиваться возможность перекрестного производства продукции в целях обеспечения безусловной стабильности ее поставок. Данное направление технологии должно включать в себя комплекс углубленных исследований в области радиационной чувствительности материалов, полупроводниковых структур и специальных технологий. Информация подобного рода является закрытой и не может быть получена по каким-либо другим каналам, кроме проведения собственных исследований. Следует также учесть, что для использования в специальных применениях радиационно-стойкая ЭКБ не может быть приобретена на мировом рынке, поэтому необходима разработка всей номенклатуры приборов. Развитие радиационно - стойкой ЭКБ должно стать одним из важнейших приоритетов программного развития ЭКБ, так как это направление определяет национальную безопасность и не может само по себе развиваться на основе использования экономических (рыночных) механизмов. Во всем мире это направление находится под строгим контролем государства, а его развитие реализуется на базе постоянно проводимых государственных программ, согласованных с развитием систем и аппаратуры специального и двойного применения. - Приоритетное развитие микросистемотехники. На основе современных достижений микроэлектроники, микромеханики, нанотехнологии, оптоэлектроники, акустоэлектроники и других критических технологий сегодня в ведущих странах создается широкий ряд микромеханических устройств для систем навигации, автоматического контроля, управления, наведения в средствах вооружений ракетно-космического, авиационного, корабельного базирования, в промышленном оборудовании, в наземных транспортных средствах, для коммутации в высокоскоростных системах передачи информации и для многих других применений. По функциональному назначению такие устройства предназначены для измерения основных физических величин, угловых и линейных скоростей, ускорений, деформации, крутящего момента, давления, расхода жидкостей и газов, глубины погружения, вибраций, концентраций химических газов и других параметров. Благодаря значительному снижению габаритов, массы, потребляемой мощности и особенно стоимости производства область применения их за рубежом быстро расширяется. Расширяются области применения таких устройств в качестве основного конструкционного элемента для микроробототехники, топливных элементов, приборов акустики, адаптивной оптики, космической техники (микроспутники) и т.д. Сказанное свидетельствует о назревшей актуальной научно-технической проблеме создания отечественных высокоточных микромеханических систем для средств высокоточного оружия и перспективного конкурентоспособного гражданского применения. Ряд отечественных организаций на протяжении последних лет активно развивает работы в области микросистемотехники и газовой сенсорики. Однако темпы отечественных разработок изделий микросистемотехники не соответствуют возрастающим потребностям организаций радиоэлектронного комплекса, поэтому данному направлению следует присвоить приоритет развития как одного из важнейших. Задержка с развитием данного направления приведет к существенному отставанию радиоэлектронных средств управления по уровню их интеллектуализации как для оборонного, так и гражданского применения. Успешный выход российской микросистемотехники на мировой уровень в короткие сроки возможен путем создания базовых центров проектирования, способных на высоком технологическом уровне проектировать и производить широкую номенклатуру прецизионных изделий микросистемотехники для обеспечения потребностей организаций Роспрома, Росатома, Роскосмоса и решения проблемы импортозамещения. - Приоритетное развитие микроэлектроники. Развитие микроэлектроники должно быть направлено на: - разработку базовых технологий СБИС: - КМОП технологии уровня 0, 18-0, 13 мкм на пластинах диаметром 200 мм с созданием опытного производства; - опытной технологии КМОП СБИС с проектными нормами до 0, 13 мкм и организация пилотной линии по выпуску специализированных СБИС на пластинах диаметром 200 мм; - разработки технологии изготовления шаблонов с фазовым сдвигом и коррекцией оптического эффекта близости для производства СБИС и организацию межотраслевого центра проектирования, изготовления и каталогизации шаблонов технологического уровня до 0, 13 мк; - ускоренное развитие систем проектирования сложных СБИС, включая СБИС типа " система на кристалле", ориентированных на разработку конкурентоспособных электронных систем мультимедиа, телекоммуникаций, систем радиолокации, космического мониторинга, цифровых систем обработки и передачи информации, цифрового телевидения и радиовещания, систем управления технологическими процессами и транспортом, систем безналичного расчета, научного приборостроения и обучения, систем идентификации, сжатия и кодирования информации, медицинской техники и экологического контроля с использованием: - унифицированных библиотек стандартных элементов (отечественных и зарубежных производств); - библиотек макроблоков и СФ-блоков, ориентированных по классам ЭКБ; - платформ и стандартных интерфейсов; - программно-аппаратных средств архитектурного проектирования и программирования, включая генерацию тестов. разработку новых поколений электронной компонентной базы: - функционально полной номенклатуры аналоговых и логических БИС для комплектации и модернизации действующих радиоэлектронных систем и аппаратуры, включая задачи импортозамещения; - СФ-блоков для обработки, сжатия и передачи информации в том числе: - сигнальные и цифровые процессоры (в том числе программируемые) и микроконтроллеры; - цифро-аналоговые и аналого-цифровые преобразователи; - шины и интерфейсы (драйверы, приемопередатчики и т.д.); - специализированные блоки для телекоммуникации, связи и АТМ технологии. - комплектов специализированных СБИС типа " система на кристалле" сложностью до 10-50 млн. транзисторов для систем цифровой обработки сигналов (цифровое телевидение, радиовещание, сотовая и радиотелефонная связь, космический мониторинг, системы управления и контроля и т.д.); - разработку приборов силовой электроники, включая: - базовую технологию и конструкцию производства тиристоров и мощных транзисторов со структурой IGBT, силовых ключей прижимной конструкции на токи до 1500 А и напряжение до 6500 В; - базовую технологию производства и конструкцию силовых микросхем, гибридных силовых приборов тиристорного типа, высоковольтных драйверов управления и интеллектуальных силовых модулей. Системы на кристалле - новый класс перспективной электронной элементной базы, одно из наиболее динамично развивающихся направлений микроэлектронной техники востребованной на рынке. Развитие технологий СБИС " система на кристалле" неразрывно связано с развитием рынка СФ-блоков. |
Последнее изменение этой страницы: 2019-06-09; Просмотров: 206; Нарушение авторского права страницы