Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Электрический ток; Сила тока; Вектор плотности тока; Связь плотности тока со скоростью упорядоченного движения носителей заряда; Уравнение непрерывности.
Вообще электрическим током называется направленное (упорядоченное) движение заряженных частиц. Электрический ток в проводниках различного рода представляет собой либо направленное движение электронов в металлах (проводники первого рода), имеющих отрицательный заряд, либо направленное движение более крупных частиц вещества — ионов, имеющих как положительный, так и отрицательный заряд — в электролитах (проводники второго рода), либо направленное движение электронов и ионов обоих знаков в ионизированных газах (проводники третьего рода). Для существования электрического тока в веществе необходимо:
Кроме количественной характеристики «сила тока I» есть еще и плотность тока j. Плотность тока j — это векторная физическая величина, модуль которой определяется отношением силы тока I в проводнике к площади S поперечного сечения проводника, т.е. В СИ единицей плотности тока является ампер на квадратный метр (А/м2). Как следует из формулы (1), . направление вектора плотности тока совпадает с направлением вектора скорости упорядоченного движения положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.
Представим себе, в некоторой проводящей среде, где течет ток, замкнутую поверхность S. Для замкнутых поверхностей векторы нормалей, а следовательно, и векторы принято брать наружу, поэтому интеграл дает заряд, выходящий в единицу времени наружу из объема V, охваченного поверхностью S. Мы знаем, что плотность постоянного электрического тока одинакова по всему поперечному сечению S однородного проводника. Поэтому для постоянного тока в однородном проводнике с поперечным сечением S сила тока:
Из (7.3.1) и постоянства значения I во всех участках цепи постоянного тока следует, что плотности постоянного тока в различных поперечных сечениях 1 и 2 цепи обратно пропорциональны площадям и этих сечений (рис. 7.2):
Рис. 7.2 Пусть S – замкнутая поверхность, а векторы всюду проведены по внешним нормалям . Тогда поток вектора сквозь эту поверхность S равен электрическому току I, идущему вовне из области, ограниченный замкнутой поверхностью S. Следовательно, согласно закону сохранения электрического заряда, суммарный электрический заряд q, охватываемый поверхностью S, изменяется за время на , тогда в интегральной форме можно записать:
Это соотношение называется уравнением непрерывности. Оно является, по существу, выражением закона сохранения электрического заряда. Дифференциальная форма записи уравнения непрерывности записывается так:
В случае постоянного тока, распределение зарядов в пространстве должно оставаться неизменным: следовательно,
это уравнение непрерывности для постоянного тока (в интегральной форме). Линии в этом случае нигде не начинаются и нигде не заканчиваются. Поле вектора не имеет источника. В дифференциальной форме уравнение непрерывности для постоянного тока . Если ток постоянный, то избыточный заряд внутри однородного проводника всюду равен нулю. В самом деле, т.к. для постоянного тока справедливо уравнение , то Избыточный заряд может появиться только на поверхности проводника в местах соприкосновения с другими проводниками, а также там, где проводник имеет неоднородности. |
Последнее изменение этой страницы: 2019-06-09; Просмотров: 86; Нарушение авторского права страницы