Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Работа, совершаемая при перемещении контура с током в магнитном поле.
На проводник с током в магнитном поле действуют силы, которые определяются с помощью закона Ампера. Если контур не закреплён, то под действием силы Ампера он в магнитном поле будет перемещаться. Значит, магнитное поле совершает работу по перемещению проводника с током. Рассчитаем её: Под действием данной силы проводник передвинется параллельно самому себе на отрезок dx из положения 1 в положение 2. Теперь работа равна: так как ldx=dS — площадь, которую пересекает проводник при его перемещении в магнитном поле, BdS=dФ — поток вектора магнитной индукции, который пронизывает эту площадь. Значит, (1) Данная формула справедлива и для произвольного направления вектора В. Рассчитаем работу по перемещению замкнутого контура с постоянным током I в магнитном поле. Контур М условно разобьем на два соединенных своими концами проводника: AВС и CDА. Работа dA, которая совершается силами Ампера при исследуемом перемещении контура в магнитном поле, равна алгебраической сумме работ по перемещению проводников AВС (dA1) и CDA (dA2), т. е. (2) Силы, которые приложены к участку CDA контура, образуют острые углы с направлением перемещения, поэтому совершаемая ими работа dA2>0. .Используя (1), находим, эта работа равна произведению силы тока I в нашем контуре на пересеченный проводником CDA магнитный поток. Проводник CDA пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ2, который пронизывает контур в его конечном положении. Значит, (3) Силы, которые действуют на участок AВС контура, образуют тупые углы с направлением перемещения, значит совершаемая ими работа dA1<0. Проводник AВС пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ1, который пронизывает контур в начальном положении. Значит, (4) Подставляя (3) и (4) в (2), найдем выражение для элементарной работы: где dФ2—dФ1=dФ' — изменение магнитного потока сквозь площадь, которая ограничена контуром с током. Таким образом, (5) Проинтегрировав выражение (5), найдем работу, которая совершается силами Ампера, при конечном произвольном перемещении контура в магнитном поле: (6) значит, работа по перемещению замкнутого контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока, сцепленного с контуром. Выражение (6) верно для контура любой формы в произвольном магнитном поле. Энергия магнитного поля. Плотность энергии магнитного поля. Энергия соленоида.
|
Последнее изменение этой страницы: 2019-06-09; Просмотров: 71; Нарушение авторского права страницы