Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Механизм подъем полиспаст канат тележка



СОДЕРЖАНИЕ

 

Введение

1. Расчет механизма подъема.

1.1 Определение кратности полиспаста

1.2 Определение усилия в канате, набегающем на барабан

1.3 Выбор каната

1.4 Определение требуемого диаметра блоков и барабана

1.5 Выбор крюковой подвески

1.6 Определение размеров барабана

1.7 Выбор двигателя

1.8 Определение передаточного числа привода

1.9 Выбор редуктора

1.10 Выбор муфты быстроходного вала

1.11 Выбор муфты тихоходного вала

1.12 Определение пусковых характеристик механизма

1.13 Выбор тормоза

1.14 Определение тормозных характеристик механизма

1.15 Проверка двигателя на нагрев

2. Расчет механизма передвижения тележки

2.1 Выбор типа привода

2.2 Определение числа ходовых колес

2.3 Кинематическая схема механизма

2.4 Определение массы тележки

2.5 Выбор ходовых колес

2.6 Определение сопротивления передвижению тележки

2.7 Выбор двигателя

2.8 Определение передаточного числа привода

2.9 Выбор редуктора

2.10 Выбор муфт быстроходного

2.11 Выбор муфт тихоходного вала

2.12 Определение пусковых характеристик механизма

2.13 Выбор тормоза и определение тормозных моментов

2.14 Проверка пути торможения

2.15 Проверка двигателя на нагрев

Заключение

Список использованных источников

 


 

ВВЕДЕНИЕ

 

Грузоподъемные и транспортные машины являются неотъемлемой частью современного производства, так как с их помощью осуществляется механизация основных технологических процессов и вспомогательных работ. В последнее время качественно возросла роль подъемно-транспортных машин на поточных линиях, в связи, с чем они стали органической частью технологического оборудования. Также весьма существенным стало влияние подъемно-транспортных машин на технико-экономические показатели производства.

Современное производство грузоподъемных машин основывается на создании блочных механизмов состоящих из унифицированных узлов (редукторов, муфт, тормозов и др.) позволяющих получить более высокий технико-экономический эффект при изготовлении и эксплуатации этих машин. Блочными называются механизмы, состоящие из самостоятельных узлов, соединенных между собой посредством легкоразъемных соединений. К таким блокам относятся крюковые подвески, тельферы, редукторы, тормоза, муфты и т.д.

Применение блочных конструкций позволяет выпускать узлы механизмов в законченном виде, что приводит к специализации отдельных цехов и заводов. Специализация производства, в свою очередь, обеспечивает повышение качества и снижает себестоимость изготовления узлов.

Использование блочных конструкций позволяет легко определить и отделить от машины узел, требующий ремонта, без разборки смежных узлов. При наличии запасных узлов замену узлов-блоков можно производить в короткие сроки, что значительно снижает простой оборудования при ремонте и позволяет осуществлять высококачественный ремонт в специализированных ремонтных цехах.


 

РАСЧЕТ МЕХАНИЗМА ПОДЪЕМА

Механизм подъем полиспаст канат тележка

Исходные данные:

- тип крана - козловой ( бесконсольный );

- грузоподъемность Q = 100 т;

- скорость подъема груза V под = 1 м/мин = 0, 017 м/с;

- высота подъема Н = 10 м;

- режим работы крана 3К (лёгкий);

- продолжительность включения механизма подъема ПВ = 15%.

 

Определение кратности полиспаста

 

Т.к. нам задан мостовой кран, то тип полиспаста - сдвоенный. Кратность полиспаста равна 4.

 

Определение усилия в канате, набегающем на барабан

 

 

где Q – номинальная грузоподъемность крана, кг;

z – число простых полиспастов в системе;

Un – кратность полиспаста;

η – общий КПД полиспаста и обводных блоков ( ).

 

 

где η бл – КПД одного блока, принимаем η бл = 0, 98 для подшипников качения.

 

где ω – количество обводных блоков.

 

 

Выбор каната

 

Выбираем канат по расчетному разрывному усилию в канате:

 

 

где k – коэффициент запаса прочности, принимаемый в зависимости от назначения и режима работы крана, принимаем k = 5 согласно [1, c. 55, табл. 2.3].

 

 

В соответствии с рекомендациями [1, c. 277, табл. III.1.1], принимаем канат двойной свивки типа ЛК-РО 6× 36 (1 + 7 + 7 + 7/7 +14 ) + 1о.с. диаметром d = 33, 0 мм имеющий при маркировочной группе проволок 1960 МПа с разрывным усилием F = 638500 H.

Обозначение каната: Канат 33 – Г – I – Н – 1960 ГОСТ 7668 – 80

1 2 3 4 5 6 7

1 – название изделия: ”канат”;

2 – диаметр наружного каната: d = 33 мм;

3 – назначение каната: Г – грузовой;

4 – марка проволок материала: I – первая;

5 – способ свивки: Н – нераскручивающийся;

6 – маркировочная группа прочности проволок: 1960 МПа;

7 – стандарт.

Проверка фактического коэффициента запаса прочности каната:

 

 >

 

Выбор крюковой подвески

 

В соответствии с рекомендациям [2, c. 280 – 281] и принятой схемой, принимаем подвеску крановую ПО СибТяжМаш:

D = 700 мм; режим работы Л; грузоподъемность 100 т; масса подвески 4900 кг; высота подвески H =2875 мм; ширина подвески B = 1300 мм.

Выбор двигателя

 

Статическая мощность двигателя механизма подъёма определяется по формуле:

 


где Q – номинальная грузоподъемность крана, т;

g = 9, 81 м/с2 – ускорение свободного падения;

V под – скорость подъема груза, м/с;

η – КПД механизма в целом (от крюка до двигателя), принимаем согласно

[1, c. 23, табл. 1.18] для подшипников качения η = 0, 85.

 

 

Номинальную мощность двигателя необходимо принимать равной или несколько меньшей статической мощности на 30…35%.

Двигатель выбираем с учетом ПВ, а также с учетом конфигурации механизма подъема, т.е. встраиваемого или наружного исполнения двигателя.

Принимаем двигатель с короткозамкнутым ротором серии MTКF 312-8

– мощность P эл = 15 кВт;

– частота вращения n эл = 675 мин-1;

– момент инерции ротора Ip = 0, 387 кг · м2;

– максимальный крутящий момент Т = 510 Н∙ м

 

Выбор редуктора

Выбираем редуктор цилиндрический трехступенчатый типа ЦЗУ-350:

-передаточное число

-номинальный крутящий момент на тихоходном валу М = 4000 Н∙ м.

 

Выбор тормоза

 

Момент статического сопротивления на валу двигателя при торможении механизма определяется по формуле:

 

 

где F б – усилие в канате, H;

z – число простых полиспастов в системе;

D б – диаметр барабана, м;

η – КПД механизма в целом, η = 0, 85;

U р – фактическое передаточное число привода.

 

 

Необходимый по нормам Ростехнадзора момент, развиваемый тормозом, определяется по формуле:

 

 

где KТ– коэффициент запаса торможения, принимаем KТ = 1, 5 - для среднего режима работы механизма.

 

 

Выбираем тормоз ТКГ – 300:

- тормозной момент Т = 800 Н∙ м;

- диаметр тормозного шкива D=300 мм;

- масса тормоза 100 кг;

 

Выбор типа привода

 

Принимаем для грузовой тележки данного мостового крана центральный привод.

 

Определение массы тележки

 

Масса тележки мостового крана определяется по формуле:

 

 

где Q – грузоподъемность, т;

 

 

Выбор ходовых колес

 

Выбираем ходовое колесо диаметром .

Принимаем коэффициент трения качения ходового колеса по рельсам (µ) и коэффициент трения в подшипниках качения колеса (f) в соответствии с рекомендациями [1, с. 33]:

- µ = 0, 0005 м;

- f = 0, 2.

Диаметр цапфы вала ходового колеса определяется по формуле:

 

 

Принимаем коэффициент, учитывающий дополнительные сопротивления от трения реборд ходовых колес о рельс согласно [1, с. 33]:

- k р = 2, 5.

 


Выбор двигателя

 

Статическая мощность двигателя механизма передвижения определяется по формуле:

 

 

где F пер. – сопротивление передвижению крана, Н;

V пер. – скорость передвижения крана, м/с;

η – КПД механизма передвижения тележки, принимаем согласно

[1, c. 23, табл. 1.18] для подшипников качения η = 0, 85.

 

 

Номинальную мощность одного двигателя механизма передвижения необходимо принимать равной или несколько большей статической мощности.

Принимаем крановый электродвигатель серии MTF 011-6:

– мощность P эл = 1, 7 кВт;

– частота вращения n эл =850 мин-1;

– момент инерции ротора Ip = 0, 021 кг · м 2;

– максимальный крутящий момент T макс = 40 Н·м;

 

Выбор редуктора

 

Расчетная мощность редуктора определяется по формуле:

 

 

где kр – коэффициент учитывающий условие работы редуктора, принимаем kр = 2, 2

 

 

При выборе редуктора учитываем передаточное число, расчетную мощность, режим работы, частоту вращения быстроходного вала (равно частоте вращения электродвигателя).

Выбираем редуктор ВКН – 320. Для него:

– передаточное число U р = 40;

– номинальный крутящий момент T ном = 280 Н·м.

 

Проверка пути торможения

 

Фактическая длина пути торможения и минимальная длина пути торможения, определяются из условия:

 

 

где t Т – время торможения крана без груза, c;

V ф пер. – фактическая скорость передвижения крана, м/с.


 

 >

 

Условие выполняется.

 

ЗАКЛЮЧЕНИЕ

 

В результате выполнения курсового проекта был спроектирован мостовой кран грузоподъёмностью 12, 5 тонн, среднего режима работы (5К).

Расчетная часть состоит из двух частей: механизма подъёма и механизма передвижения.

В механизме подъёма произведен расчет следующий расчет:

- выбран канат двойной свивки типа ЛК-Р диаметром 18 мм имеющий при маркировочной группе проволок 1764 МПа;

- выбрана крюковая подвеска;

- определены размеры барабана, его диаметр и полная длинна с учетом кратности полиспаста;

- подобран рациональный материал барабана и проверен на прочность по напряжениям сжатия;

- выбраны муфты быстроходного и тихоходного валов;

- выбран и проверен на нагрев электродвигатель с учетом того, что механизм работает с различными грузами;

- сделана проверка с допускаемыми значениями пусковых и тормозных характеристик в неблагоприятных режимах работы механизма.

В механизме передвижения тележки произведен расчет центрального привода, для которого:

- выбраны ходовые колеса с учетом их количества, грузоподъёмности крана, массы тележки и ее скорости передвижения;

- выбран и проверен электродвигатель;

- выбран редуктор;

- сделана проверка с допускаемыми значениями пусковых характеристик при неблагоприятном режиме работы крана.

На основе расчетной части выполнена графическая, в которой отображено на листах форматах А1:

- общий вид крана;

- механизм передвижения тележки;

- грузовая тележка.


СОДЕРЖАНИЕ

 

Введение

1. Расчет механизма подъема.

1.1 Определение кратности полиспаста

1.2 Определение усилия в канате, набегающем на барабан

1.3 Выбор каната

1.4 Определение требуемого диаметра блоков и барабана

1.5 Выбор крюковой подвески

1.6 Определение размеров барабана

1.7 Выбор двигателя

1.8 Определение передаточного числа привода

1.9 Выбор редуктора

1.10 Выбор муфты быстроходного вала

1.11 Выбор муфты тихоходного вала

1.12 Определение пусковых характеристик механизма

1.13 Выбор тормоза

1.14 Определение тормозных характеристик механизма

1.15 Проверка двигателя на нагрев

2. Расчет механизма передвижения тележки

2.1 Выбор типа привода

2.2 Определение числа ходовых колес

2.3 Кинематическая схема механизма

2.4 Определение массы тележки

2.5 Выбор ходовых колес

2.6 Определение сопротивления передвижению тележки

2.7 Выбор двигателя

2.8 Определение передаточного числа привода

2.9 Выбор редуктора

2.10 Выбор муфт быстроходного

2.11 Выбор муфт тихоходного вала

2.12 Определение пусковых характеристик механизма

2.13 Выбор тормоза и определение тормозных моментов

2.14 Проверка пути торможения

2.15 Проверка двигателя на нагрев

Заключение

Список использованных источников

 


 

ВВЕДЕНИЕ

 

Грузоподъемные и транспортные машины являются неотъемлемой частью современного производства, так как с их помощью осуществляется механизация основных технологических процессов и вспомогательных работ. В последнее время качественно возросла роль подъемно-транспортных машин на поточных линиях, в связи, с чем они стали органической частью технологического оборудования. Также весьма существенным стало влияние подъемно-транспортных машин на технико-экономические показатели производства.

Современное производство грузоподъемных машин основывается на создании блочных механизмов состоящих из унифицированных узлов (редукторов, муфт, тормозов и др.) позволяющих получить более высокий технико-экономический эффект при изготовлении и эксплуатации этих машин. Блочными называются механизмы, состоящие из самостоятельных узлов, соединенных между собой посредством легкоразъемных соединений. К таким блокам относятся крюковые подвески, тельферы, редукторы, тормоза, муфты и т.д.

Применение блочных конструкций позволяет выпускать узлы механизмов в законченном виде, что приводит к специализации отдельных цехов и заводов. Специализация производства, в свою очередь, обеспечивает повышение качества и снижает себестоимость изготовления узлов.

Использование блочных конструкций позволяет легко определить и отделить от машины узел, требующий ремонта, без разборки смежных узлов. При наличии запасных узлов замену узлов-блоков можно производить в короткие сроки, что значительно снижает простой оборудования при ремонте и позволяет осуществлять высококачественный ремонт в специализированных ремонтных цехах.


 

РАСЧЕТ МЕХАНИЗМА ПОДЪЕМА

механизм подъем полиспаст канат тележка

Исходные данные:

- тип крана - козловой ( бесконсольный );

- грузоподъемность Q = 100 т;

- скорость подъема груза V под = 1 м/мин = 0, 017 м/с;

- высота подъема Н = 10 м;

- режим работы крана 3К (лёгкий);

- продолжительность включения механизма подъема ПВ = 15%.

 


Поделиться:



Последнее изменение этой страницы: 2020-02-16; Просмотров: 58; Нарушение авторского права страницы


lektsia.com 2007 - 2025 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.095 с.)
Главная | Случайная страница | Обратная связь