Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ. (государственный технический университет)



МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

(государственный технический университет)

ФИЛИАЛ «ВЗЛЕТ»

 

Кафедра РЭВС

РАЛДЫГИН И.К.

 

КОНСПЕКТ ЛЕКЦИЙ ПО КУРСУ

«Основы теории цепей». Часть 3.

Переходные процессы в линейных электрических цепях

 

Учебное пособие для студентов радиотехнической специальности.

 

 
ОДОБРЕНО НА ЗАСЕДАНИИ КАФЕДРЫ РЭВС «____» ________________ 2004 года Протокол № ____

 

 


Ахтубинск – 2004


Предисловие к 3-ей части

 

В третьей части конспекта по Основам теории цепей (ОТЦ) кратко изложены два метода расчета переходных процессов в линейных электрических цепях: Классический метод и Операторный метод. И классический и операторный методы расчета теоретически можно применять для решения задач любой сложности. Каким из них пользоваться определяется автором.

Однако классический метод физически более прозрачен, чем операторный, в котором решение уравнений во многом формализовано. Операторный метод имеет перед классическим явное преимущество если для расчета переходных процессов использовать прикладную программу Mathcad 2000, особенно в тех случаях, когда воздействующее напряжение является линейно возрастающее или в виде всплеска одной или несколько экспонент.


Глава 1. Основные сведения о переходных процессах в линейных электрических цепях

 

Начальные условия

 

Значения токов, напряжений и их производных в момент коммутации называют начальными условиями.

Начальные условия подразделяются на зависимые и независимые.

Напряжение на емкости и ток через индуктивность, непосредственно перед коммутацией, называются независимыми начальными условиями, т.к. их значения не зависят от вида и места коммутации и определяются только энергетическим состоянием цепи непосредственно перед коммутацией.

Зависимыми начальными условиями являются токи через емкость и напряжение на индуктивности в момент коммутации. Они зависит от вида и места коммутации и в общем случае, в момент коммутации, могут изменяться скачком.

Независимые начальные условия определяются в цепи до коммутации, а зависимые начальные условия определяются в цепи образовавшейся в момент коммутации.

 

Переходные процессы в цепи RC при подключении ее к источнику синусоидального напряжения

 

Рассмотрим цепи RC Рис.1.1, которая при нулевых начальных условиях UC (0)=0 подключается к источнику синусоидального напряжения

 

 

Определим для этой цепи закон изменения напряжения на емкости UC ( t ) после коммутации, применив вышеприведенный алгоритм.

1. Независимые начальные условия UC (0)=0.

2. Зависимые начальные условия

 

 

На момент коммутации , получим

 

 

3. Амплитуда принужденной составляющей напряжения на емкости определяется по общему правилу расчета одноконтурных цепей.

Определим модуль входного сопротивления

 

 

и его аргумент


Определяем комплексную амплитуду тока в цепи в установившемся режиме

 

 

Определим комплексную амплитуду напряжения на емкости

 

 

Теперь можно записать принужденную составляющую напряжения на емкости

 

 

4.5. Характеристическое уравнение и его корень, а также свободная составляющая не зависят от вида входного напряжения и определяются по ранее приведенным формулам

 

 

5. Постоянная интегрирования:

 

 

6. Закон изменения напряжения на емкости принимает следующий вид:

 

 

Ниже приведен пример 2.2 расчета переходных процессов в цепи RC при подключении ее к источнику синусоидального напряжения при нулевых начальных условиях Рис.2.5. На Рис.2.6 приведены результаты электронного моделирования этой цепи при синусоидальном воздействии.

 

 

 

Из этих рисунков видно, что результаты расчетов по программе Mathcad (Рис.2.5) и результаты электронного моделирования по программе Elecrronics Workbench (Рис.2.6) практически совпадают.

В первый полупериод после коммутации напряжение на емкости в 1, 7 раза больше принужденной составляющей, что необходимо учитывать при выборе пробивного напряжения на конденсаторе.


Глава 3. Переходные процессы в цепях второго порядка

 

Апериодический режим

Апериодический режим наступает, если корни характеристического уравнения (3.20) действительные и разные, а это возможно если

 

 

где      - волновое сопротивление контура;

           - добротность контура.

 

Таким образом, в последовательном колебательном контуре (Рис.3.1) апериодический режим наступает при Q < 0.5.

В связи с этим при анализе переходных процессов в последовательном колебательном контуре отпадает надобность в составлении характеристического уравнения и определении его корней.

В апериодическом режиме законы изменения тока и напряжений на пассивных элементах описываются формулой (3.13).

Если подставить в (3.13) найденные значения коэффициентов a и b (см. п.5) и выполнить простейшие преобразования, то получим законы изменения напряжений на пассивных элементах последовательного колебательного контура (3.1) в апериодическом режиме:

 

 

 

 

Для иллюстрации законов изменения напряжений на пассивных элементах последовательного колебательного контура в апериодическом режиме зададимся произвольными значениями E, L, C, , а сопротивление нагрузки R выберем таким, чтобы Q < 0.5 и по формулам (3.20) рассчитаем и построим соответствующие графики.

Пример таких расчетов приведен на Рис.3.2.



Критический режим

Критический режим в последовательном колебательном контуре наступает, если корни характеристического уравнения действительные и одинаковые, а это возможно, если:

 

 

Таким образом, критический режим в последовательном колебательном контуре наступает при Q< 0.5.

Законы изменения напряжений на пассивных элементах цепи Рис.3.1 в критическом режиме описываются формулой (3.14).

Если подставить в (3.14) значения a и b (см. п.5) и выполнить простейшие преобразования, то получим:

 

 

 

Для иллюстрации законов изменения напряжений на пассивных элементах последовательного колебательного контура в критическом режиме выберем значения E, L и C такими как в примере 3.1, а сопротивление нагрузки выберем из условия Q =0.5.

Пример расчетов по формулам (3.21) приведен на Рис.3.3.

Из сравнения рисунков 3.2 и 3.3 следует, что изменения напряжений на резисторе (ток в цепи) в критическом режиме происходят более плавно, чем в апериодическом.

Кроме того, в критическом режиме конденсатор заряжается, примерно, в 2, 6 раза быстрее, чем в апериодическом.

Если ограничить длительность переходного процесса в критическом режиме временем t пер =5/ d, при котором UC ( t пер )=0.96* E, то возникает возможность синтеза последовательного колебательного контура в заданной длительностью переходного процесса в критическом режиме.

Пусть задано сопротивление нагрузки R в цепи рис.3.1, которая подключается к источнику постоянного напряжения при нулевых начальных условиях. Необходимо найти такие значения L и C, при которых в цепи возникает критический режим, длительность которого должна составлять t пер.

Решение. В критическом режиме t пер =5/ d;

 

Совместное решение этих уравнений дает формулы для расчета потребных значений индуктивности и емкости

 

Колебательный режим

Колебательный режим в последовательном колебательном контуре возникает, если корни характеристического уравнения комплексные и сопряженные, а это возможно если

 

 

В этом случае

 

где      - частота свободных колебаний.

В колебательном режиме законы изменения напряжений на пассивных элементах контура определяются по формуле (3.15).

Подстановка коэффициентов a и b (3.19) в формулу (3.15) дает законы изменения напряжений на пассивных элементах контура Рис.3.1:

 

.

 

 

Для иллюстрации законов изменения напряжений на пассивных элементах последовательного колебательного контура в колебательном режиме (3.22) выберем значения E, L и C такими же, как в примерах 3.1 и 3.2, а сопротивление нагрузки выберем из условия Q =5.

Пример расчетов по формулам (3.22) приведен на Рис.3.4.

Из анализа изложенного следует, что при Q > 0.5 в последовательном контуре Рис.3.1 возникают затухающие колебания, при которых происходит непрерывный обмен энергией между индуктивностью и емкостью.

Затухание свободных колебаний происходит вследствие необратимых потерь энергии в активном сопротивлении R.

Длительность переходного процесса в колебательном режиме определятся коэффициентом затухания

 

 

Чем больше Q, т.е. чем меньше R, тем дольше продолжается переходной процесс.

Частота свободных колебаний всегда меньше резонансной частоты контура

 

и при

 

Из Рис.3.4 видно, что напряжение на емкости в начале переходного процесса почти в два раза превышает приложенное напряжение, что необходимо учитывать при выборе пробивного напряжения конденсатора.

Таким образом, режим переходного процесса в колебательном контуре, при подключении его к источнику постоянного напряжения, целиком определяется комбинацией значений RLC-элементов:

 

 


При Q < 0.5 - в цепи после коммутации наступает апериодический режим;

при Q =0.5 - критический режим;

при Q > 0.5 - колебательный режим.

 

 

 


Общие сведения

 

В предыдущих главах был изложен классический метод расчета переходных процессов в линейных электрических цепях.

Такие процессы описываются линейными дифференциальными уравнениями с постоянными коэффициентами. Для их решения классическим методом необходимо определить постоянные интегрирования, зависящие от начальных условий. По мере усложнения электрических схем и возрастания порядка дифференциальных уравнений трудности, связанные с нахождением постоянных интегрирования, увеличиваются.

Решение упомянутых уравнений может быть выполнено операторным методом, где не требуется дополнительно определить постоянные интегрирования.

При использовании операторного метода действительные функции времени, называемые оригиналами, заменяются их операторными изображениями. В результате чего исходные дифференциальные уравнения заменяются алгебраическими; затем после решения алгебраических уравнений производится обратный переход в область функций действительного переменного.

Связь между оригиналом f ( t ) и его изображением устанавливается прямым преобразованием Лапласа:

 

 

где P = s + j * w - комплексное число.

Из определения изображения (4.1) следует, что каждый оригинал имеет единственное изображение. В свою очередь, оригинал вполне определяется своим изображением.

Фразу «оригинал f ( t ) имеет своим изображением F ( P )» принято записывать в виде знака соответствия:

или

 

Существует обратное функциональное преобразование, дающее возможность определить оригинал по его изображению (4.1):

Формула (4.2) называется обратным преобразование Лапласа.

 

ЛИТЕРАТУРА

 

1. Атабеков Г.И. Основы теории цепей. Учебник для вузов. М., «Энергия», 1969 г. 424с. с ил.

2. Г.В. Зевеке Г.В., П.А. Ионкин, А.В. Нетушил, С.В. Страхов. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия» 1975 г. 752с. с ил.

3. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи: Учебник для электротехн., энерг., приборостроит. спец. вузов.-8-е изд., перераб. и доп.-М.: Высш. шк., 1984.-559с., ил.

4. Нейман Л.Р., Демирчян К.С. Теоретические основы электротехники: В 2-х т. Учебник для вузов. Том 1.-3-е изд., перераб. и доп.-Л.: Энергоиздат. Ленингр. отд-ние, 1981.-536с., ил.

5. Дьяконов В. Д. Mathcad 2000: Учебный курс-СПб: Питер, 2000.-592с.: ил.

6. М. Херхагер, Х. Партоль Mathcad 2000 полное руководство: перевод с нем.-К.: Издательская группа BHV. 2000.-416с.

7.Карлащук В.И. Электронная лаборатория на IBM PC. Программа Electronics Workbench и ее применение. «Салон-Р», 2000.-506с.

 


СОДЕРЖАНИЕ

 

Предисловие к 3-ей части

Глава 1. Основные сведения о переходных процессах в линейных электрических цепях

1.1 Возникновение и общая характеристика переходных процессов       

1.2 Начальные условия

1.3 Математические основы анализа переходных процессов

Глава 2. Переходные процессы в цепях первого порядка

2.1 Общий алгоритм расчета переходных процессов в цепях первого порядка классическим методом

2.2 Переходные процессы в цепях RC при подключении ее к источнику постоянного напряжения и коротком замыкании

2.3 Переходные процессы в цепях RC при подключении ее к источнику синусоидального напряжения

2.4 Переходные процессы в цепях RL при подключении ее к источнику постоянного напряжения и коротком замыкании

2.5 Подключение цепи RL к источнику синусоидального напряжения

2.6 Синтез цепи RC с заданными параметрами переходного процесса

Глава 3 Переходные процессы в цепях второго порядка

3.1 Общая характеристика переходных процессов в цепях второго порядка

3.2 Алгоритм расчета переходных процессов в цепях второго порядка

3.3 Переходные процессы в последовательном колебательном контуре при подключении его к источнику постоянного напряжения

3.3.1 Апериодический режим

3.3.2 Критический режим

3.3.3 Колебательный режим

Глава 4. Операторный метод расчета переходных процессов в линейных электрических цепях

4.1 Общие сведения

4.2 Изображения простейших функций

4.3 Операторное сопротивление. Закон Ома в операторной форме

4.4 Законы Кирхгофа в операторной форме

4.5 Эквивалентные операторные схемы

4.6 Определение оригинала по известному изображению

4.6.1 Расчет переходных процессов в цепях первого порядка операторным методом

4.6.2 Расчет переходных процессов в цепях второго порядка операторным методом

Литература        

МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

(государственный технический университет)

ФИЛИАЛ «ВЗЛЕТ»

 

Кафедра РЭВС

РАЛДЫГИН И.К.

 

КОНСПЕКТ ЛЕКЦИЙ ПО КУРСУ

«Основы теории цепей». Часть 3.

Переходные процессы в линейных электрических цепях

 

Учебное пособие для студентов радиотехнической специальности.

 

 
ОДОБРЕНО НА ЗАСЕДАНИИ КАФЕДРЫ РЭВС «____» ________________ 2004 года Протокол № ____

 

 


Ахтубинск – 2004


Предисловие к 3-ей части

 

В третьей части конспекта по Основам теории цепей (ОТЦ) кратко изложены два метода расчета переходных процессов в линейных электрических цепях: Классический метод и Операторный метод. И классический и операторный методы расчета теоретически можно применять для решения задач любой сложности. Каким из них пользоваться определяется автором.

Однако классический метод физически более прозрачен, чем операторный, в котором решение уравнений во многом формализовано. Операторный метод имеет перед классическим явное преимущество если для расчета переходных процессов использовать прикладную программу Mathcad 2000, особенно в тех случаях, когда воздействующее напряжение является линейно возрастающее или в виде всплеска одной или несколько экспонент.


Поделиться:



Последнее изменение этой страницы: 2020-02-16; Просмотров: 136; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.098 с.)
Главная | Случайная страница | Обратная связь