Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии 


Раздел 5. Микропроцессоры: архитектура и структурное построение




Тема5.1. Функционально-структурные особенности микропроцессоров

Микропроцессор — это центральный блок персонального компьютера, предназначенный для управления работой всех остальных блоков и выполнения арифметических и логических операций над информацией.

Микропроцессор выполняет следующие основные функции:

чтение и дешифрацию команд из основной памяти;

чтение данных из основной памяти и регистров адаптеров внешних устройств;

прием и обработку запросов и команд от адаптеров на обслуживание внешних устройств;

обработку данных и их запись в основную память и регистры адаптеров внешних устройств;

выработку управляющих сигналов для всех прочих узлов и блоков компьютера.

В состав микропроцессора входят следующие устройства.

1. Арифметико-логическое устройство предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией.

2. Устройство управления координирует взаимодействие различных частей компьютера. Выполняет следующие основные функции:

формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполнения различных операций;

формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки компьютера;

получает от генератора тактовых импульсов обратную последовательность импульсов.

3. Микропроцессорная память предназначена для кратковременного хранения, записи и выдачи информации, используемой в вычислениях непосредственно в ближайшие такты работы машины. Микропроцессорная память строится на регистрах и используется для обеспечения высокого быстродействия компьютера, так как основная память не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора.

4. Интерфейсная система микропроцессора предназначена для связи с другими устройствами компьютера. Включает в себя:

внутренний интерфейс микропроцессора;

буферные запоминающие регистры;

схемы управления портами ввода-вывода и системной шиной. (Порт ввода-вывода — это аппаратура сопряжения, позволяющая подключить к микропроцессору , другое устройство.)

К микропроцессору и системной шине наряду с типовыми внешними устройствами могут быть подключены и дополнительные платы с интегральными микросхемами, расширяющие и улучшающие функциональные возможности микропроцессора. К ним относятся математический сопроцессор, контроллер прямого доступа к памяти, сопроцессор ввода-вывода, контроллер прерываний и др.

Математический сопроцессор используется для ускорения выполнения операций над двоичными числами с плавающей запятой, над двоично-кодированными десятичными числами, для вычисления тригонометрических функций. Математический сопроцессор имеет свою систему команд и работает параллельно с основным микропроцессором, но под управлением последнего. В результате происходит ускорение выполнения операций в десятки раз. Модели микропроцессора, начиная с МП 80486 DX, включают математический сопроцессор в свою структуру.

Контроллер прямого доступа к памяти освобождает микропроцессор от прямого управления накопителями на магнитных дисках, что существенно повышает эффективное быстродействие компьютера.

Сопроцессор ввода-вывода за счет параллельной работы с микропроцессором значительно ускоряет выполнение процедур ввода-вывода при обслуживании нескольких внешних устройств, освобождает микропроцессор от обработки процедур ввода-вывода, в том числе реализует режим прямого доступа к памяти.

Прерывание — это временный останов выполнения одной программы в целях оперативного выполнения другой, в данный момент более важной. Контроллер прерываний обслуживает процедуры прерывания, принимает запрос на прерывание от внешних устройств, определяет уровень приоритета этого запроса и выдает сигнал прерывания в микропроцессор.

Все микропроцессоры можно разделить на группы:

микропроцессоры типа CISC с полным набором системы команд;

микропроцессоры типа RISC с усеченным набором системы команд;

микропроцессоры типа VLIW со сверхбольшим командным словом;

микропроцессоры типа MISC с минимальным набором системы команд и весьма высоким быстродействием и др.

Важнейшими характеристиками микропроцессора являются:

тактовая частота. Характеризует быстродействие компьютера. Режим работы процессора задается микросхемой, называемой генератором тактовых импульсов. На выполнение процессором каждой операции отводится определенное количество тактов. Тактовая частота указывает, сколько элементарных операций выполняет микропроцессор за одну секунду. Тактовая частота измеряется в МГц;

разрядность процессора — это максимальное количество разрядов двоичного числа, над которым одновременно может выполняться машинная операция. Чем больше разрядность процессора, тем больше информации он может обрабатывать в единицу времени и тем больше, при прочих равных условиях, производительность компьютера;

Тема 5.2. Формат команд центрального процессора. Режимы адресации.

Адресация — осуществление ссылки (обращение) к устройству или элементу данных по его адресу; установление соответствия между множеством однотипных объектов и множеством их адресов; метод идентификации местоположения объекта.

Методы адресации

Адресное пространство

  • Простая (англ. flat addressing) — указание объекта с помощью идентификатора или числа, не имеющего внутренней структуры.
  • Расширенная (англ. extended addressing) — доступ к запоминающему устройству с адресным пространством, большим диапазона адресов, предусмотренного форматом команды.
  • Виртуальная (англ. virtual addressing) — принцип, при котором каждая программа рассматривается как ограниченное непрерывное поле логической памяти, а адреса этого поля — как виртуальные адреса.
  • Ассоциативная (англ. associative addressing) — точное местоположение данных не указывается, а задаётся значение определённого поля данных, идентифицирующее эти данные (см.: Ассоциативная память).

Исполнение программ

  • Статическая (англ. static addressing) — соответствие между виртуальными и физическими адресами устанавливается до начала и не меняется в ходе выполнения программы.
  • Динамическая (англ. dynamic addressing) — преобразование виртуальных адресов в физические осуществляется в процессе выполнения программы. Программа при этом не зависит от места размещения в физической памяти и может перемещаться в ней в процессе выполнения.

Кодирование адресов

  • Явная (англ. explicit addressing) — адресация путём явного задания адресов в программе.
  • Неявная (англ. implied addressing) — один или несколько операндов или адресов операндов находятся в фиксированных для данной команды регистрахили ячейках памяти и не требуют явного указания в команде.
  • Абсолютная (англ. absolute addressing) — адресная часть команды содержит абсолютный адрес.
  • Символическая (англ. symbolic addressing) — адресная часть команды содержит символический адрес.

Вычисление адресов





Рекомендуемые страницы:


Читайте также:

Последнее изменение этой страницы: 2016-03-17; Просмотров: 465; Нарушение авторского права страницы


lektsia.com 2007 - 2019 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.006 с.) Главная | Обратная связь