|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Принцип действия переменного волноводного диссипативного аттенюатора
Рис. 17.6.5 схематично поясняет конструкция переменного волноводного диссипативного аттенюатора. Ослабление обеспечивается потерями в диэлектрике заполнителя. Электрическое поле моды Коаксиальный резистивно-пленочный переменный аттенюатор
Принцип действия и способ регулировки ослабления коаксиального резистивно-пленочного переменного аттенюатора
Принцип действия и способ регулировки ослабления этого типа аттенюатора показан на рис. 17.6.6. Подбирая размер
Аттенюатор с переменной Т-образной схемой
Принцип действия аттенюатора с переменной Т-образной схемой
Схема этого типа переменного аттенюатора повторяет постоянный аттенюатор с Т-образной резистивной схемой, но с регулируемыми резисторами (рис. 17.6.7). Все три резистора регулируются одновременно. Большое достоинство этого аттенюатора – возможность получения хороших значений входного и выходного КСВн. Переменный аттенюатор на основе закритического ослабления волновода Плунжерный аттенюатор использует хорошо известный эффект ослабления волны в волноводе на частоте, меньшей критической для данного волновода. Специальная кругло-волноводная конструкция с закритическим ослаблением на частоте
( Активные аттенюаторы Существует широкий (и все расширяющийся) класс активных аттенюаторов (на пин-диодах, на арсенид-галлиевых полевых униполярных транзисторах, на канальных полевых униполярных МОП-транзисторах и т. д.), которых мы не будем касаться в данном обзоре, т. к. из-за их сложности и высокой цены вероятность их применения в анализаторах цепей мала.
ПРИНЦИПЫ ИЗМЕРЕНИЯ МОЩНОСТИ НА СВЧ Предисловие Совершенно очевидно, зачем нужно измерять мощность генерируемых, излучаемых, проходящих некоторый тракт, принимаемых сигналов, поскольку мощность – один из основных параметров сигналов, а в диапазоне СВЧ – главный и единственный энергетический параметр, т. к. вследствие волновой природы сигналов понятия тока и напряжения в этом диапазоне вообще не «работают». В скалярном анализаторе цепей (САЦ) и скалярном спектроанализаторе (СА) мощность – единственный измеряемый параметр сигналов (зондирующих, опорных, отраженных, пропущенных, калибровочных), в векторном анализаторе цепей (ВАЦ) и векторном анализаторе спектра (ВАС) кроме него измеряются еще фазы многочисленных сигналов. Ошибки оценки мощностей в первом случае и мощностей и фаз – во втором напрямую определяют ошибки итоговых результатов: характеристик цепей и сигналов. Хотя измерение мощности в диапазоне СВЧ – очень «старая» задача, ее решение во все новых разработках всегда не банально, т. к. должно удовлетворять все более высоким и взаимно противоречивым требованиям точности, мощностного и временного разрешений, быстродействия, помехоустойчивости, повторяемости, надежности и экономичности. Это становится возможным в основном благодаря технологическому прогрессу сенсоров мощности и развитию техники оцифровки и компьютерной обработки сигналов. Вторжение элементов цифровой и вычислительной техники произвело революцию в технике измерения мощности, как и вообще в измерительной технике. Все измерительные приборы диапазона СВЧ должны измерять мощность тех или иных колебаний – в узкой сканирующей полосе или в широкой полосе, на коротком интервале времени («мгновенная»), или на длинном интервале («средняя»), непрерывных или импульсных сигналов. В этом ряду приборов ВАЦ и САЦ имеют только одну «поблажку»: поскольку эти приборы основаны на принципе зондирования, в них измеряются мощности сигналов с высоким уровнем априорной информации. В частности, как правило, известны временная, частотная и модуляционная структуры сигналов. Зато ряд других требований выступают в ужесточенной форме. Это особенно относится к требованию широкого динамического диапазона (в особенности в ВАЦе) в сочетании с малым временем измерения мощности, обусловленным быстрым и широкодиапазонным сканированием или переключением частоты. Другое жесткое требование – предельно малая случайная ошибка в условиях ограниченности времени измерения и невысокого отношения сигнал-шум. Это иногда не вполне осознанное требование возникает в связи с предпринимаемыми большими усилиями по согласованию трактов и калибровке и коррекции систематической ошибки (особенно в ВАЦе): случайная ошибка не должна превалировать над малой скорректированной систематической ошибкой. Перечисленные выше факторы эффективности измерения мощности взаимно противоречивы, поэтому требуется знать, как методически и аппаратурно оптимально разрешить эти противоречия. Например, общая ошибка измерения мощности складывается из ряда парциальных ошибок, обусловленных различными взаимопротиворечивыми факторами, и понижение общей ошибки есть результат методических и конструктивных компромиссов. С другой стороны, точность и чувствительность, точность и динамический диапазон мощностей и т. д. предъявляют противоположные требования к параметрам аппаратуры, и требуются многочисленные оптимальные конструктивные решения. Ясно, что лучший способ разрешения всех этих проблем – обобщить исторический опыт создания измерителей мощности, накопленный по мере прогресса технологий и последовательного наступления тенденций микроминиатюризации, цифровых технологий, компьютеризации, – с одной стороны, и по мере развития техники скоростной связи, радиолокации, радионавигации и других, и, следовательно, умеренного усложнения структуры сигналов, – с другой стороны. Вопрос измерения мощностей опорных и тестовых сигналов ВАЦ, САЦ, СА, ВАС тесно связан с энергетическим балансом прибора, то есть с уровнем мощности генератора, чувствительностью и полосой ПЧ приемников, динамическим диапазоном при тестировании различных устройств, как линейных, так и нелинейных. Учет и увязка этих факторов с эффективностью прибора и экономическими реалиями – столь сложная задача требует выработки определенной концепции оптимизации измерительных приборов СВЧ, которая, в свою очередь, нуждается в усвоении мирового опыта измерения мощности СВЧ-сигналов. Основные понятия Единицы Ватт. Международная система единиц СИ устанавливает в качестве единицы мощности ватт (Вт) [21.1]: один Вт есть один джоуль в секунду. Децибелы. Во многих случаях удобно пользоваться относительной мощностью, то есть отношением
Использование децибелов дает два преимущества. Во-первых, сокращается диапазон используемых чисел; например, диапазон от +63 дБ до -153 дБ более компактен, чем диапазон от дБм. Это популярная и удобная логарифмическая единица абсолютной мощности. Формула для мощности
Смысл исчисления абсолютной мощности в этих единицах: «столько-то дБ выше одного мВт» (отсутствие знака означает «плюс», при отрицательном значении Категории мощности Только для сигнала в виде постоянного тока (напряжения) термин мощность имеет прозрачный смысл, не требующий пояснений: мощность равна произведению тока и напряжения. В остальных случаях в зависимости от временной структуры сигнала и опорного масштаба времени различают «среднюю мощность», «импульсную мощность» и «пиковую мощность огибающей». Средняя мощность. Для идеализированной модели сигнала в виде периодического переменного напряжения (тока) бесконечной длительности термин «мощность» относится к постоянным составляющим тока и напряжения; здесь опорный масштаб времени бесконечен. В более реалистической модели сигнала в виде синусоидальных тока и напряжения на сопротивлении (в общем случае – комплексном) длительностью в целое число
Здесь
Если длительность сигнала
поскольку В еще более реалистической модели с током и напряжением, имеющими полосовой спектр, измерение средней мощности должно включать усреднение по интервалу Импульсная мощность.
Популярное:
|
Последнее изменение этой страницы: 2016-03-17; Просмотров: 1431; Нарушение авторского права страницы