Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
По уровню сложности структуры (суперсложные, большие и сложные, подсистемы, элементы).
Определение большой системы. Существует ряд подходов к разделению систем по сложности. В частности, Г. Н. Поваров в зависимости от числа элементов, входящих в систему, выделяет четыре класса систем: малые системы (10...103 элементов), сложные (104...107 элементов), ультрасложные (107...1030 элементов), суперсистемы (1030...10200 элементов). Так как понятие элемента возникает относительно задачи и цели исследования системы, то и данное определение сложности является относительным, а не абсолютным. Английский кибернетик С. Бир классифицирует все кибернетические системы: - на простые - сложные В зависимости от способа описания: - детерминированного - теоретико-вероятностного. А. И. Берг определяет сложную систему как систему, которую можно описать не менее чем на двух различных математических языках (например, с помощью теории дифференциальных уравнений и алгебры Буля). Очень часто сложными системами называют системы, которые нельзя корректно описать математически, либо потому, что в системе имеется очень большое число элементов, неизвестным образом связанных друг с другом, либо неизвестна природа явлений, протекающих в системе. При разработке сложных систем возникают проблемы, относящиеся не только к свойствам их составляющих элементов и подсистем, но также к закономерностям функционирования системы в целом. При этом появляется широкий круг специфических задач, таких, как: - определение общей структуры системы; - организация взаимодействия между элементами и подсистемами; - учет влияния внешней среды; - выбор оптимальных режимов функционирования системы; - оптимальное управление системой и др. Чем сложнее система, тем большее внимание уделяется этим вопросам. Математической базой исследования сложных систем является теория систем. В теории систем большой системой (сложной, системой большого масштаба, Lage Scale Systems ) называют систему, если она состоит из большого числа взаимосвязанных и взаимодействующих между собой элементов и способна выполнять сложную функцию. Четкой границы, отделяющей простые системы от больших, нет. Деление это условное и возникло из-за появления систем, имеющих в своем составе совокупность подсистем с наличием функциональной избыточности. Простая система может находиться только в двух состояниях: - состояние работоспособности (исправном); - состояние отказа (неисправном). При отказе элемента простая система либо полностью прекращает выполнение своей функции, либо продолжает ее выполнение в полном объеме, если отказавший элемент резервирован. Большая система при отказе отдельных элементов и даже целых подсистем не всегда теряет работоспособность, зачастую только снижаются характеристики ее эффективности. Это свойство больших систем обусловлено их функциональной избыточностью и, в свою очередь, затрудняет формулировку понятия «отказ» системы. Под большой системой понимается совокупность материальных ресурсов, сбор средств, передачи и обработки информации, людей-операторов, занятых на обслуживании этих средств, и людей-руководителей, облеченных надлежащими правами и ответственностью для принятия решений. Большие системы – это такие системы, в которых число состояний, определяемых состоянием элементов или взаимосвязями между элементами, комбинаторно велико или несчетно. Это обстоятельство существенно характеризует специфику свойств большой системы и накладывает ряд ограничений в процессе ее исследования. Понятие «комбинаторно» следует определять как наличие в системе многообразия комбинаций связей и вариантов отношений между элементами, которые могут динамично изменять их состояние. Сравнение таких вариантов на основе перебора часто оказывается принципиально невозможным. Поэтому для исследования больших систем требуются специфические методы исследования на основе синтеза. Одним из таких методов является метод декомпозиции системы, разбиение ее на достаточно определенные подсистемы и установление тех элементов, которые определяют взаимосвязь посредством хотя бы одного общего ресурса (средства) обмена информацией или веществом. Материальные ресурсы — это сырье, материалы, полуфабрикаты, денежные средства, различные виды энергии, станки, оборудование, люди, занятые на выпуске продукции, и т. д. Все указанные элементы ресурсов объединены с помощью некоторой системы связей, которые по заданным правилам определяют процесс взаимодействия между элементами для достижения общей цели или группы целей. Примеры больших систем: информационная система; пассажирский транспорт крупного города; производственный процесс; система управления полетом крупного аэродрома; энергетическая система и др. Характерные особенности больших систем: большое число элементов в системе (сложность системы); взаимосвязь и взаимодействие между элементами; иерархичность структуры управления; обязательное наличие человека в контуре управления, на которого возлагается часть наиболее ответственных функций управления.
2.8. По уровню сложности структуры (суперсложные, большие и сложные, подсистемы, элементы);
Сложность системы Сложные системы – это такие системы, в которых все функциональные процессы имеют динамичный характер и не могут быть описаны на языке классической математике, использую формулы и аналитические структуры. Они могут быть лишь представлены имитационными моделями в той или иной степени адекватности. Исследование сложных систем и динамичных процессов, протекающих в них, сталкиваются с двумя видами сложности, как «внутренняя сложность», так и «внешняя сложность». Внутренняя сложность связана с необходимостью учета синергетических свойств, как в элементах, так и в самой системе. Внешняя сложность заключается в том, что необходимо учитывать влияние всех факторов внешней среды на систему, которые могут вызывать случайные отклонения от заданной цели развития или существования. Результат взаимодействия внешних и внутренних факторов может иметь не только детерминированный, но и вероятностный или стохастический характер. Пусть имеется совокупность из n элементов. Если они изолированы, не связаны между собой, то эти я элементов еще не являются системой. Для изучения этой совокупности достаточно провести не более чем n исследований. В общем случае в системе связь элемента А с элементом Б не эквивалентна связи элемента Б с элементом А, и поэтому необходимо рассматривать п(п—1) связей. Если характеризовать состояние каждой связи наличием или отсутствием в данный момент, то общее число состояний (для такого самого простого поведения) системы будет равно 2^n. Даже при небольших п это фантастическое число. Например, пусть п== 10. Число связей п(п-1) = 90. Поэтому изучение БС путем непосредственного обследования ее состояний оказывается весьма громоздким. Следовательно, необходимо использовать ЭВМ и разрабатывать методы, позволяющие сократить число обследуемых состояний БС. Расчленение системы на элементы. Внутренняя структура элемента при этом не является предметом исследования. Имеют значение только свойства, определяющие его взаимодействие с другими элементами системы и оказывающие влияние на характер системы в целом. Формально любая совокупность элементов системы вместе со связями между ними может рассматриваться как ее подсистема. Использование этого понятия оказывается особенно плодотворным в тех случаях, когда в качестве подсистем фигурируют некоторые более или менее самостоятельно функционирующие части системы. Подсистемы БС сами могут быть большими системами, которые легко расчленить на соответствующие подсистемы. Так, большую систему: «Городской пассажирский транспорт» по видам транспорта можно расчленить на подсистемы: троллейбусы, автобусы, трамвай, метрополитен, такси. Каждая из этих подсистем, в свою очередь, является БС. Так, таксомоторное хозяйство состоит из: сотен (тысяч) автомобилей и шоферов, нескольких автопарков, средств технического обслуживания и управления.
Структурная сложность Сущность понятия структурной сложности связана с тем, что компоненты (подсистемы) СУ связаны между собой запутанным, трудным для непосредственного восприятия образом. При этом имеем дело только со структурой коммуникационных каналов и схемой взаимодействия компонент СУ, пренебрегая динамическими аспектами. Однако и в этом случае необходимо принять во внимание еще и другие аспекты связанности структуры.
Схема связности
Важным аспектом сложности является способ, которым подсистемы объединяются в единое целое. Структура связности СУ определяет потоки передачи информации в структуре и ограничивает воздействия, которые может оказать одна часть системы на другую. Сложность может быть охарактеризована тщательным исследованием схем взаимодействия подсистем (схем связности), а не ее порядком.
Многообразие
Принцип необходимого многообразия Эшби, согласно которому многообразие выходных сигналов системы может быть достигнуто только с помощью достаточного многообразия входных воздействий также имеет непосредственное отношение к сложности СУ. Можно назвать такую способность системы реализовать многие различные типы поведения – сложность управления, т. к. этот аспект сложности отражает меру способностей преобразовывать многообразие входных сигналов в многообразие выходных. Принцип необходимого многообразия гласит, что
Обще многообразие > = Многообразие возмущений в поведении СУ Многообразие управлений
Смысл этого утверждения таков: если необходимо, чтоб СУ реализовала заданный вид поведения вне зависимости от внешних помех, необходимо подавить многообразие в ее поведении. Что можно только увеличив множество управлений. Другими словами – многообразие может быть разрушено только многообразием. Это кибернетический аналог второго закона термодинамики. Уровни взаимодействия это относительная сила взаимодействия между различными компонентами СУ и уровнями иерархии. В ряде случаев слабое взаимодействие повышают сложность системы, однако практически этими взаимодействиями часто можно пренебречь и таким образом получить менее сложную модель СУ.
Динамическая сложность Рассмотрим некоторые аспекты сложности, которые проявляются в динамическом поведении системы.
Популярное:
|
Последнее изменение этой страницы: 2016-03-15; Просмотров: 1852; Нарушение авторского права страницы