Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ЭДС и напряжение свинцового аккумулятора
Активные вещества положительных и отрицательных пластин обладают определенными потенциалами относительно электролита. Разность этих потенциалов определяет ЭДС аккумулятора, которая не зависит от количества активного вещества в пластинах. ЭДС аккумулятора зависит в основном от плотности электролита, эта зависимость определяется эмпирической формулой: E = 0, 85 + d, где d – плотность электролита в порах активной массы пластин. Напряжение аккумулятора при заряде больше, чем величина ЭДС, на величину внутреннего падения напряжения: UЗ = E + IЗ ∙ r0, где r0 – внутреннее сопротивление аккумулятора, а при разряде соответственно: UР = E – IР ∙ r0. У разряженного свинцового аккумулятора плотность составляет d = 1, 17, тогда Е = 0, 85 + 1, 17 = 2, 02 В. У заряженного аккумулятора d = 1, 21, тогда Е = 0, 85 + 1, 21 = 2, 06 В => ЭДС разряженного аккумулятора при отключенной нагрузке мало отличается от ЭДС заряженного аккумулятора. При заряде аккумулятора, его напряжение заряда составляет 2, 3 – 2, 8 В. Напряжение разряда составляет примерно 1, 8 В. Емкость свинцового аккумулятора Номинальная емкость определяется при десятичасовом разряде до напряжения 1, 8 В, при температуре электролита 25°С. Номинальная емкость свинцового аккумулятора составляет 36 А/ч. Этой емкости соответствует ток разряда IР = Q/10 = 3, 6 А. Если изменить ток разряда IР и температуру электролита, то изменится и его емкость. Повышение температуры окружающей среды способствует повышению емкости, но при температуре 40°С происходит коробление положительных пластин и резко увеличивается саморазряд аккумулятора, поэтому для нормальной эксплуатации аккумулятора должна поддерживаться температура + 35°С – 15°С. Номинальная емкость при температуре 25°С и десятичасовом разряде определяется формулой: ,
где Pt – коэффициент использования активной массы аккумулятора, %; Т – фактическая температура электролита при разряде.
Типы кислотно – свинцовых аккумуляторов Стационарные аккумуляторы маркируются буквами С, СК, СЗ, СЗЭ, СН и другими: С – стационарный аккумулятор; К – аккумулятор, допускающий кратковременный разряд; З – аккумулятор в закрытом исполнении; Э – эбонитовый сосуд; Н – аккумулятор с намазанными пластинами. Число, которое ставится после буквенного обозначения, означает номер аккумулятора: С-1 – 36 А/ч; С-4 – 4 х 36 А/ч; и другие...
Типы щелочных аккумуляторов Маркировка Н–Ж (Никель – Железо), Н–К (Никель – Кадмий), С – Ц (Серебро – Цинк). Электродвижущая сила (ЭДС) Н–Ж аккумуляторов составляет: EЗ = 1, 5 В; EР = 1, 3 В. ЭДС Н–К аккумуляторов составляет: EЗ = 1, 4 В; EР = 1, 27 В. Среднее напряжение заряда составляет UЗ = 1, 8 В; разряда UР = 1 В. СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ Общие положения Питание стационарной аппаратуры автоматики и связи на железнодорожном транспорте осуществляется от источников постоянного тока с номинальными напряжениями, например, 24, 60, 220 В и др. Источники с номинальным напряжением 24 В используют для питания аппаратуры на транзисторах, цепей сигнализации, релейных схем автоматики и др.; источники с номинальным напряжением 60 В - для автоматических телефонных станций, телеграфной коммутационной аппаратуры; источники с напряжением 220 В - для питания аппаратуры связи, двигателей стрелочных переводов и т.д. Источники тока, имеющие определенное номинальное напряжение, обычно выполняют в виде самостоятельного оборудования, входящего в общий комплекс электропитающей установки дома связи, поста ЭЦ или другого объекта, где размещены централизованные источники электропитания. К основным системам электропитания относятся автономная, буферная, безаккумуляторная и комбинированная системы питания (рис. 2.1). Автономная система предназначена для питания переносной и стационарной аппаратуры автоматики и связи, а остальные - для питания стационарной аппаратуры. Рис. 2.1. Структурная схема систем электропитания
Автономная система питания Систему питания от первичных элементов в основном используют для обеспечения работы переносной аппаратуры (радиостанций, измерительной аппаратуры и др.). Для питания стационарной аппаратуры автономную систему питания применяют в местах, где отсутствуют сети переменного тока. Система питания от аккумуляторов по способу «заряд-разряд» (рис. 2.2) предназначена для случаев, когда энергия от сетей переменного тока подается нерегулярно. Сущность этого способа питания заключается в том, что для каждой градации напряжения имеется отдельный выпрямитель и две (или более) аккумуляторные батареи . От одной батареи питается аппаратура, а другая заряжается от выпрямителя или находится в резерве заряженной. Как только батарея разрядится до определенного состояния, ее отключают и подсоединяют к выпрямителю для заряда, а для питания аппаратуры подключают заряженную батарею. При работе по этому способу аккумуляторы чаще всего заряжаются в режиме неизменяющегося тока. Емкость аккумуляторов определяется исходя из продолжительности питания аппаратуры в течение 12 -24 ч, поэтому аккумуляторные батареи очень громоздкие и для их установки требуются специально оборудованные помещения больших размеров. Срок службы таких аккумуляторов 6-7 лет, так как глубокие и частые циклы заряда и разряда приводят к быстрому разрушению пластин. Необходимость постоянного наблюдения за процессами заряда и разряда приводит к большим эксплуатационным расходам.
Рис.2.2. Схема системы питания от аккумуляторов по способу «заряд – разряд»: Ф – фидер; ШПТ – шина переменного тока; ЗШ – зарядные шины; РШ–рязрядные шины; 1, 2, 3 – группы аккумуляторов
Перечисленные недостатки наряду с низким к. п. д. установки (30-45%) ограничивают использование этого режима. К достоинствам способа относятся отсутствие пульсации напряжения на нагрузке и возможность использования для заряда различных источников тока.
Буферная система питания
При такой системе питания параллельно выпрямителю UZ и нагрузке включена аккумуляторная батарея GB (рис. 2.3). В случае аварии в сети переменного тока или повреждения выпрямителя дальнейшее питание нагрузки обеспечивает батарея без перерыва в подаче энергии. Аккумуляторная батарея обеспечивает надежное резервирование источников электрической энергии, и, кроме того, она совместно с фильтром питания осуществляет необходимое сглаживание пульсации. При буферной системе питания различают три режима работы: среднего тока, импульсного и непрерывного подзаряда. При режиме среднего тока (рис. 2.4) выпрямитель UZ, включенный параллельно с аккумуляторной батареей GВ, обеспечивает постоянный ток Iв независимо от изменения тока Iн в нагрузке Rн. Когда ток нагрузки Iн мал, выпрямитель питает нагрузку и заряжает аккумуляторную батарею током I3, а когда ток нагрузки велик, выпрямитель совместно с батареей, которая разряжается током Iр, питает нагрузку. Во время заряда напряжение на каждом аккумуляторе батареи увеличивается и может достигать 2, 7 В, а во время разряда уменьшается до 2 В. Для осуществления данного режима могут быть использованы простейшие выпрямители без устройств автоматической регулировки. Ток выпрямителя рассчитывают исходя из количества электрической энергии (ампер-часы), затрачиваемой на питание нагрузки в течение суток. Это значение должно быть увеличено на 15-25% для компенсации потерь, которые всегда существуют при заряде и разряде аккумуляторов . К недостаткам режима относятся: невозможность точно определить и установить необходимый ток выпрямителя, так как действительный характер изменения тока нагрузки никогда точно неизвестен, что приводит к недозаряду или перезаряду аккумуляторов; небольшой срок службы аккумуляторов (8-9 лет), вызываемый глубокими циклами заряда и разряда; значительные колебания напряжения на нагрузке, так как напряжение на каждом аккумуляторе может изменяться от 2 до 2, 7 В. При режиме импульсного подзаряда (рис. 2.5) ток выпрямителя изменяется скачкообразно в зависимости от напряжения на аккумуляторной батарее GВ. При этом выпрямитель UZ обеспечивает питание нагрузки Rн совместно с батареей GВ или питает нагрузку
Рисунок 2.3 – Схема буферной системы питания
Рисунок 2.4 – Режим среднего тока: а – схема; б – диаграмма токов; в – зависимости токов и напряжений от времени; IЗ и IР – соответственно токи заряда и разряда аккумуляторной батареи Рисунок 2.5 – Режим импульсного подзаряда: а – схема; б – диаграмма токов и напряжений; в, г – зависимости токов и напряжений от времени
и подзаряжает батарею. Максимальный ток выпрямителя устанавливают несколько больше тока, имеющего место в час наибольшей нагрузки, а минимальный ток нагрузки IВ max - меньше минимального тока нагрузки Iн. Предположим, что в исходном положении выпрямитель отдает минимальный ток. Батарея аккумуляторов разряжается, и напряжение на ней падает до 2, 1 В на элемент. Реле Р отпускает якорь и контактами шунтирует резисторR. Ток на выходе выпрямителя возрастает скачкообразно до максимального. С этого момента выпрямитель питает нагрузку и заряжает батарею. В процессе заряда напряжение на аккумуляторной батарее увеличивается и достигает 2, 3 В на элемент. Вновь срабатывает реле Р, и ток выпрямителя падает до минимального; батарея начинает разряжаться. Далее циклы повторяются. Длительность интервалов времени максимального и минимального тока выпрямителя изменяется в соответствии с изменением тока в нагрузке. К достоинствам режима относятся: простота системы регулирования тока на выходе выпрямителя; небольшие пределы изменения напряжения на аккумуляторной батарее и на нагрузке (от 2, 1 до 2, 3 В на элемент); увеличение срока службы аккумуляторов до 10-12 лет в связи с менее глубокими циклами заряда и разряда. Этот режим используют для питания устройств автоматики. При режиме непрерывного подзаряда (рис. 2.6) нагрузка Rн питается полностью от выпрямителя UZ. Заряженная аккумуляторная батарея GБ получает от выпрямителя небольшой постоянный ток подзаряда, компенсирующий саморазряд. Для осуществления указанного режима необходимо на выходе выпрямителя установить напряжение из расчета (2, 2 ± 0, 05) В на каждый аккумулятор и поддерживать его с погрешностью не более ±2%. При этом ток подзаряда для кислотных аккумуляторов Iп = (0, 001-0, 002) Сн и для щелочных аккумуляторов Iп = 0, 01СН. Следовательно, для вы- Рисунок 2.6 – Режим непрерывного подзаряда: а – схема; б – диаграмма токов; в – зависимости токов и напряжений от времени
полнения этого режима выпрямители должны иметь точные и надежные устройства стабилизации напряжения. Невыполнение этого требования приводит к перезаряду аккумуляторов или к их глубокому разряду и сульфатации. К достоинствам режима относится: достаточно высокий к. п. д. установки, определяемый только выпрямителем (η = 0, 7÷ 0, 8); большой срок службы аккумуляторов, достигающий 18-20 лет благодаря отсутствию циклов заряда и разряда; высокая стабильность напряжения на выходе выпрямительного устройства; уменьшение эксплуатационных расходов благодаря возможности автоматизации и упрощению обслуживания аккумуляторов. Нормально аккумуляторы находятся в заряженном состоянии и не требуют непрерывного наблюдения. Отсутствие циклов заряда и разряда и правильно выбранный ток подзаряда уменьшают сульфатацию и позволяют увеличить периоды между перезарядами и контрольными разрядами. Недостатком режима является необходимость усложнения питающих устройств за счет элементов стабилизации и автоматизации. Режим используют в устройствах для питания аппаратуры связи. Популярное:
|
Последнее изменение этой страницы: 2016-03-17; Просмотров: 4493; Нарушение авторского права страницы