Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Лекция 2 Динамика твердого тела. Законы сохранения
План 1. Момент силы и момент импульса тела относительно неподвижной оси вращения. Момент инерции относительно оси. Уравнение динамики вращательного движения твердого тела относительно неподвижной оси. Кинетическая энергия вращающегося тела. 2. Центр масс механической системы и закон его движения. Закон сохранения импульса как фундаментальный закон природы и связь с однородностью пространства. 3. Закон сохранения механической энергии. Закон сохранения момента импульса. Тезисы 1. Неинерциальные системы отсчета – системы отсчета, движущиеся относительно инерциальной системы с ускорением. В неинерциальных системах законы Ньютона несправедливы. Если же учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета. Силы инерции – силы, обусловленные ускоренным движением системы отсчета относительно измеряемой системы отсчета. Второй закон Ньютона в неинерциальных системах отсчета Произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции) , где а – ускорение тела в инерциальной системе отсчета. Есть три возможных случая проявления сил инерции: силы инерции при ускоренном поступательном движении системы отсчета; силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета; силы инерции, действующие на тело, движущееся во вращающейся системе отсчета. Основной закон динамики для неинерциальных систем отсчета В неинерциальных системах отсчета третий закон Ньютона, а также законы сохранения импульса, энергии и момента импульса не выполняются!!! Абсолютно твердое тело – это тело, расстояние между двумя точками которого при любых условиях остается постоянным. Момент силы F относительно неподвижной точки О - физическая величина, определяемая векторным произведением радиуса-вектора г, проведенного из точки О в точку А приложения силы, на силу F (рис. 25): . Здесь М — псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от г к F. Модуль вектора момента силы , где a — угол между г и F; rsina = l — кратчайшее расстояние между линией действия силы и точкой О - плечо силы. Момент силы относительно неподвижной оси z - скалярная величина Мz, равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точки О данной оси Z (рис.26). Значение момента Мz не зависит от выбора положения точки О на оси. Если ось Z совпадает с направлением вектора М, то момент силы представляется в виде вектора, совпадающего с осью
Уравнение динамики вращательного движения твердого тела относительно неподвижной оси . Если ось вращения совпадает с главной осью инерции, проходящей через центр масс, то , где J — главный момент инерции тела (момент инерции относительно главной оси). Момент инерции тела относительно оси вращения - физическая величина, равная сумме произведений элементарных масс на квадраты их расстояний до рассматриваемой оси Момент инерции – величина аддитивная; момент инерции тела равен сумме моментов инерции его частей. В случае непрерывного распределения масс эта сумма сводится к интегралу , где интегрирование производится по всему объему тела. Теорема Штейнера: момент инерции тела J относительно любой оси вращения равен моменту его инерции Jc относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы mтела на квадрат расстояния а между осями Кинетическая энергия вращающегося твердого тела , где - момент инерции тела относительно оси Z. Кинетическая энергия тела при его плоском движении складывается из энергии поступательного движения со скоростью, равной скорости центра масс, и энергии вращения вокруг оси, проходящей через центр масс тела Центр масс (или центр инерции) системы материальных точек - воображаемая точка С, положение которой характеризует распределение массы этой системы. Радиус-вектор центра масс , где mi и ri — соответственно масса и радиус-вектор i-й материальной точки; n — число материальных точек в системе. Скорость центра масс . Импульс системы материальных точек , т. е. импульс системы равен произведению массы системы на скорость ее центра масс. Закон движения центра масс , т. е. центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, действующих на систему. Производная по времени от импульса механической системы равна геометрической сумме внешних сил, действующих на систему . В случае отсутствия внешних сил (замкнутая система) или Закон сохранения импульса: импульс замкнутой системы сохраняется. Этот закон – фундаментальный закон природы (он универсален), следствие однородности пространства. Однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета. Импульс сохраняется и для незамкнутой системы, если геометрическая сумма всех внешних сил равна нулю. Из закона сохранения импульса вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остается неподвижным. Работа силы – количественная характеристика процесса обмена энергией между взаимодействующими телами. Работа постоянной силы, составляющей угол с направлением прямолинейного движения тела равна произведению проекции силы Fs на направление перемещения, умноженной на перемещение точки приложения силы. В общем случае сила может изменяться как по модулю, так и по направлению, поэтому вышеуказанной формулой пользоваться нельзя. Элементарная работа силы F на перемещении -скалярная величина , где - угол между векторами F и dr; ds = |dr| — элементарный путь; Fs — проекция вектора F на вектор dr (рис. 13). Работа силы на участке траектории от точки 1 до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сумма приводится к интегралу Для вычисления этого интеграла надо знать зависимость силы Fs от пути s вдоль траектории 1—2. Если эта зависимость представлена графически (рис. 14), тогда искомая работа А определяется на графике площадью закрашенной фигуры.
При a< p/2 работа силы положительна, в этом случае составляющая Fs совпадает по направлению с вектором скорости движения v (см. рис. 13). Если a> p/2, то работа силы отрицательна. При a=p/2 (сила направлена перпендикулярно перемещению) работа силы равна нулю. Единица работы — джоуль (Дж): 1 Дж — работа, совершаемая силой в 1 Н на пути в 1 м (1 Дж = 1 Н•м). Мощность – скалярная физическая величина, характеризующая скорость совершения работы или . Единица мощности — ватт (Вт): 1 Вт — мощность, при которой за время 1 с совершается работа в 1 Дж (1 Вт = 1 Дж/с).
Кинетическая энергия механической системы — это энергия механического движения этой системы. Связь работы и кинетической энергии: работа силы на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии тела, т. е. . Тело массой т, движущееся со скоростью v, обладает кинетической энергией . Характерные свойства кинетической энергии: 1) всегда положительна; 2) неодинакова в разных системах отсчета; 3) является функцией состояния системы. Работа силы при перемещении из точки 1 в точку 2 или Теорема о кинетической энергии: Приращение кинетической энергии материальной точки на некотором перемещении равно алгебраической сумме работ всех сил, действующих на точку на том же перемещении Потенциальное поле – поле, в котором работа, совершаемая силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положения. Работа консервативных сил по замкнутой траектории Потенциальная энергия — механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними. Характерные особенности потенциальной энергии: Потенциальную энергию тела в каком-то определенном положении считают равной нулю, а энергию тела в других положениях отсчитывают относительно нулевого уровня. Потенциальная энергия может быть определена по формуле , где С — постоянная интегрирования, т. е. потенциальная энергия определяется с точностью до некоторой произвольной постоянной. Связь между консервативной силой и потенциальной энергией , где - градиент. Конкретный вид функции П зависит от характера силового поля. Например, потенциальная энергия тела массой т, поднятого на высоту h над поверхностью Земли, равна , Потенциальная энергия упругодеформированного тела (пружины) Потенциальная энергия системы, подобно кинетической энергии, является функцией состояния системы. Она зависит только от конфигурации системы и ее положения по отношению к внешним телам. 3. Полная механическая энергия системы — энергия механического движения и взаимодействия, т. е. равна сумме кинетической и потенциальной энергий Закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать так: в консервативных системах полная механическая энергия сохраняется. Закон сохранения механической энергии – следствие однородности времени, т. е. физические законы инвариантны относительно выбора начала отсчета времени. Например, при свободном падении тела в поле сил тяжести его скорость и пройденный путь зависят лишь от начальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать. В системе, в которой действуют также неконсервативные силы, например силы трения, полная механическая энергия системы не сохраняется. Момент импульса материальной точки А относительно неподвижной точки О - физическая величина, определяемая векторным произведением , где r — радиус-вектор, проведенный из точки О в точку A; p - импульс материальной точки (рис.28); L—псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к p. Модуль вектора момента импульса , где — угол между векторами r и p, l — плечо вектора р относительно точки О. Момент импульса относительно неподвижной оси z - скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Значение момента импульса Lz не зависит от положения точки О на оси z. Момент импульса отдельной частицы направлен по оси в сторону, определяемую правилом правого винта. Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц или : Момент импульса твердого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость. Закон динамики вращательного движения твердого тела относительно неподвижной оси : производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси или производная вектора момента импульса твердого тела равна моменту (сумме моментов) внешних сил В замкнутой системе момент внешних сил равен нулю, поэтому . Это - закон сохранения момента импульса: момент импульса замкнутой системы сохраняется. Закон сохранения момента импульса -фундаментальный закон природы, он связан со свойством симметрии пространства- его изотропностью, т.е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).
Популярное:
|
Последнее изменение этой страницы: 2016-03-17; Просмотров: 943; Нарушение авторского права страницы