![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Лекция 2 Динамика твердого тела. Законы сохранения
План 1. Момент силы и момент импульса тела относительно неподвижной оси вращения. Момент инерции относительно оси. Уравнение динамики вращательного движения твердого тела относительно неподвижной оси. Кинетическая энергия вращающегося тела. 2. Центр масс механической системы и закон его движения. Закон сохранения импульса как фундаментальный закон природы и связь с однородностью пространства. 3. Закон сохранения механической энергии. Закон сохранения момента импульса. Тезисы 1. Неинерциальные системы отсчета – системы отсчета, движущиеся относительно инерциальной системы с ускорением. В неинерциальных системах законы Ньютона несправедливы. Если же учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета. Силы инерции – силы, обусловленные ускоренным движением системы отсчета относительно измеряемой системы отсчета. Второй закон Ньютона в неинерциальных системах отсчета Произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции) Основной закон динамики для неинерциальных систем отсчета Абсолютно твердое тело – это тело, расстояние между двумя точками которого при любых условиях остается постоянным. Момент силы F относительно неподвижной точки О - физическая величина, определяемая векторным произведением радиуса-вектора г, проведенного из точки О в точку А приложения силы, на силу F (рис. 25): Модуль вектора момента силы Момент силы относительно неподвижной оси z - скалярная величина Мz, равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точки О данной оси Z (рис.26). Значение момента Мz не зависит от выбора положения точки О на оси. Если ось Z совпадает с направлением вектора М, то момент силы представляется в виде вектора, совпадающего с осью
Уравнение динамики вращательного движения твердого тела относительно неподвижной оси Момент инерции тела относительно оси вращения - физическая величина, равная сумме произведений элементарных масс на квадраты их расстояний до рассматриваемой оси Теорема Штейнера: момент инерции тела J относительно любой оси вращения равен моменту его инерции Jc относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы mтела на квадрат расстояния а между осями Кинетическая энергия вращающегося твердого тела Кинетическая энергия тела при его плоском движении складывается из энергии поступательного движения со скоростью, равной скорости центра масс, и энергии вращения вокруг оси, проходящей через центр масс тела Центр масс (или центр инерции) системы материальных точек - воображаемая точка С, положение которой характеризует распределение массы этой системы. Радиус-вектор центра масс Закон сохранения импульса: импульс замкнутой системы сохраняется. Этот закон – фундаментальный закон природы (он универсален), следствие однородности пространства. Однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета. Импульс сохраняется и для незамкнутой системы, если геометрическая сумма всех внешних сил равна нулю. Из закона сохранения импульса вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остается неподвижным. Работа силы – количественная характеристика процесса обмена энергией между взаимодействующими телами. Работа постоянной силы, составляющей угол с направлением прямолинейного движения тела В общем случае сила может изменяться как по модулю, так и по направлению, поэтому вышеуказанной формулой пользоваться нельзя. Элементарная работа силы F на перемещении Работа силы на участке траектории от точки 1 до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сумма приводится к интегралу
При a< p/2 работа силы положительна, в этом случае составляющая Fs совпадает по направлению с вектором скорости движения v (см. рис. 13). Если a> p/2, то работа силы отрицательна. При a=p/2 (сила направлена перпендикулярно перемещению) работа силы равна нулю. Единица работы — джоуль (Дж): 1 Дж — работа, совершаемая силой в 1 Н на пути в 1 м (1 Дж = 1 Н•м). Мощность – скалярная физическая величина, характеризующая скорость совершения работы
Кинетическая энергия механической системы — это энергия механического движения этой системы. Связь работы и кинетической энергии: работа силы на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии тела, т. е.
Теорема о кинетической энергии: Приращение кинетической энергии материальной точки на некотором перемещении равно алгебраической сумме работ всех сил, действующих на точку на том же перемещении Потенциальное поле – поле, в котором работа, совершаемая силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положения. Работа консервативных сил по замкнутой траектории Конкретный вид функции П зависит от характера силового поля. Например, потенциальная энергия тела массой т, поднятого на высоту h над поверхностью Земли, равна 3. Полная механическая энергия системы — энергия механического движения и взаимодействия, т. е. равна сумме кинетической и потенциальной энергий Закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать так: в консервативных системах полная механическая энергия сохраняется. Закон сохранения механической энергии – следствие однородности времени, т. е. физические законы инвариантны относительно выбора начала отсчета времени. Например, при свободном падении тела в поле сил тяжести его скорость и пройденный путь зависят лишь от начальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать. В системе, в которой действуют также неконсервативные силы, например силы трения, полная механическая энергия системы не сохраняется. Момент импульса материальной точки А относительно неподвижной точки О - физическая величина, определяемая векторным произведением Закон динамики вращательного движения твердого тела относительно неподвижной оси
Популярное:
|
Последнее изменение этой страницы: 2016-03-17; Просмотров: 943; Нарушение авторского права страницы