Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Ньютон, первый фундаментальный закон природы



 

Великий физик XX в., разрушивший казав­шиеся незыблемыми позиции классической механики, -Ньютон был первым, кто попытался сформулировать элементарные законы, которые определяют временной ход широкого класса про­цессов в природе с высокой степенью полноты и точности, и оказал своими трудами глубокое и сильное влияние на все миро­воззрение в целом.

Основу методологии И. Ньютона составляют индуктивный метод и установка на экспериментальное определение количе­ственных отношений между явлениями действительности.

Основу классической механики составляют три закона, на­званные законами Ньютона. Первый закон: тело сохраняет со­стояние покоя или равномерного и прямолинейного движения, пока на него не оказывают воздействие другие тела. Способ­ность тела сопротивляться воздействию на него сил называют инертностью, поэтому первый закон Ньютона иначе называет­ся законом инерции. Первый закон Ньютона устанавливает су­ществование инерциальных систем отсчета.

Вершиной научного творчества И. Ньютона является теория тяготения, которая дает ответ на вопрос о природе силы, зас­тавляющей двигаться небесные тела. Согласно закону всемирно­го тяготения тела притягиваются друг к другу с силой, которая прямо пропорциональна их массам и обратно пропорциональна квадрату расстояния между ними. Сила тяготения универсальна, проявляется между любыми двумя материальными телами не­зависимо от их конкретных свойств и действует на любом рас­стоянии. И. Ньютон показал, что законы движения планет, от­крытые И. Кеплером, неразрывно связаны с действием силы всемирного тяготения, и являются математическим выражением этой силы. Таким образом, законы И. Кеплера оказались след­ствиями закона всемирного тяготения. Создание теории тяготения, которую иначе называют небесной механикой, окончатель­но утвердило победу гелиоцентрической системы Н. Коперника.

 

Фундаментальные физические постоянные

Первая результативная попытка выявления взаимосвязи и единства числовых значений фундаментальных физических постоянных принадлежит Р. Бартини.

Скорость света в вакууме c
Постоянная Планка h
Элементарный заряд e
Число Авогадро NA
Константа Больцмана k
Газовая постоянная R
Постоянная Фарадея F
Стандартное ускорение свободного падения g

 

Возникновение научной химии.Системные химические теории

Начало научной химии связывают с работами английского ученого XVII в. Р. Бойля, который предложил понятие химический элемент. По мнению Р. Бойля, химический элемент- это «простое тело», входящее в состав вещества и определяющее его свойства. В химии XVIII в. господствовала теория флогистона, кото­рая была предложена для объяснения процесса горения. Пред­полагалось, что флогистон — это невесомая субстанция, кото­рую содержат все вещества, способные к горению, и которая выделяется в процессе горения. Открытия в химии середины и конца XVIII в. привели к отказу от теории флогистона. Так, в 1748 г. М.В. Ломоносов сформулировал закон сохранения мас­сы, который не допускает возможности существования неве­сомой материи. Это закон гласит: .масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции. Следующий этап в развитии химии (начало XIX в.) связан с именем английского химика Дж. Дальтона. Исследования химического состава газов позволили Дж. Дальтону сформулировать закон кратных отно­шений — один из фундаментальных законов химии. Закон кратных отношений утверждает, что массы двух химических элементов в любых возможных соединениях относятся друг к другу; как целые числа.

В начале XIX в. ученые начинают использовать понятие «мо­лекулы». Молекула — это устойчивая совокупность атомов, способная к самостоятельному существованию. Научная революция в химии связана с именем другого рус­ского ученого Д.И. Менделеева, который в 1869 г. предложил периодическую систему химических элементов. Периодичес­кая система, оформленная в виде таблицы, упорядочивала все многообразие известных к тому времени химических элемен­тов и позволяла предсказывать новые. Д.И. Менделеев распо­ложил все элементы в соответствии с возрастанием их атомно­го веса и показал, что таким образом складывается четкая система. Периодическая система Д.И. Менделеева стала той объединяющей концепцией, которая позволила не только систематизировать, но и объяснить весь накопленный к концу XIX в. эмпирический материал, и стала прочной основой ее временной теоретической химии.

Развитие химии в XX в. шло по линии возрастания диффе­ренцированное внутри комплекса химического знания. Этот процесс привел к разделению на неорганическую и органичес­кую химию и созданию аналитической и физической химии: возникновению целого ряда междисциплинарных исследований, которые со временем обрели самостоятельный научный статус (космохимия, геохимия, агрохимия, биохимия и др.).

Классическая термодинамика

 

Термо­динамика описывает тепловые явления в макромире. Классическая термодинамика сформулировала несколько принципов, или начал, которые вели к важным мировоззренчес­ким выводам. Первое начало термодинамики основано на пред­ставлениях о том, что термодинамическая система обладает внутренней энергией теплового движения молекул и потенци­альной энергией их взаимодействия. Согласно первому началу термодинамики количество теплоты, сообщенное телу, увеличивает его внутрен­нюю энергию и идет на совершение телом работы. Согласно второму началу термодинамики нельзя осуществить работу за счет энергии тел, находящихся в состоянии термодина­мического равновесия, энтропия замкнутой системы возрастает, а ее максимальное значение достигается в состоянии теплового равновесия. Термодинамические процессы необратимы, а предос­тавленная самой себе система стремится к состоянию теплового равновесия, в котором температуры тел выравниваются. Второе нача­ло термодинамики называют также законом возрастания энтро­пии. Распространение второго начала термодинамики на всю Все­ленную, понимаемую как закрытая система, привело к созданию теории тепловой смерти, согласно которой все процессы в мире ведут к состоянию наибольшего равновесия, т.е. хаосу Теория тепловой смерти Вселенной была разработана в середи­не XIX в. В. Томпсоном и Р. Клаузйусом, ее постулаты звучат следующим образом:

ü энергия Вселенной постоянна;

ü энтропия Вселенной, понимаемой как закрытая система, возрастает.

Смысл этих постулатов заключается в том, что со временем все виды энергии во Вселенной превратятся в тепловую, а пос­ледняя перестанет претерпевать качественные изменения и пре­образовываться в другие формы. Наступившее состояние тепло­вого равновесия будет означать смерть Вселенной. При этом общее количество энергии в мире останется тем же самым, т.е. универсальный закон сохранения энергии не будет нарушен. Теория тепловой смерти сразу же после создания была под­вергнута критике. В частности, появилась флуктуационная теория Л. Больцмана, согласно которой Вселенная выводится из состоя­ния равновесия с помощью внутренне присущих ей флуктуации. Третьей составляющей классической физики является опти­ка. На протяжении двух столетий в оптике соперничали корпус­кулярная и волновая теории, объяснявшие природу световых яв­лений на разных основаниях. В XVII в. дискуссия развернулась между И. Ньютоном, который придерживался корпускулярной теории, и нидерландским ученым X. Гюйгенсом — сторонником волновой теории. В соответствии с теорией И. Ньютона, свет есть поток материальных частиц-корпускул, наделенных неиз­менными свойствами и взаимодействующих с другими частица­ми в соответствии с законами механики. Согласно теории X. Гюйгенса свет представляет собой волну, распространение которой аналогично распространению волн на поверхности воды, и подчиняется тем же законам. На протяжении XVIII в. большинство уче­ных придерживалось корпускулярной теории И. Ньютона, не­смотря на эвристическую силу и убедительность волновой тео­рии X. Гюйгенса. Немалую роль здесь сыграл непререкаемый авторитет, которым пользовался И. Ньютон в среде научного со­общества.

 

Энтропия, закон Больцмана

Принцип Карно выражает собой весьма интересную особенность: он определяет общую тенденцию в эволюции физического мира. С течением времени в замкнутой изолированной системе энтропия должна постоянно возрастать. Функция состояния термодинамической системы, изменения которой в равновесном процессе равно отношению количества теплоты, сообщенного системе или отведенного от нее, к термодинамической температуре системы. Неравновесные процессы в изолированной системе сопровождаются ростом энтропии, они приближают систему к состоянию равновесия, в котором энтропия максимальна. Согласно флуктуационной теории Л. Больцмана, Вселенная выводится из состоя­ния равновесия с помощью внутренне присущих ей флуктуации.

 

20. Возникновение научной биологии. Дарвинизм. Генетика

 

Наука биология зародилась в XV-XVI вв., в связи с интересом к человеческой природе. Изначально существовала медицина, цветоводство, животноводство. Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысяче­летий человек пользовался генетическими методами для улучшения домашних животных и возделывае­мых растений, не имея представления о механизмах, лежащих в основе этих методов. Однако лишь в начале XX в. ученые стали осозна­вать в полной мере важность законов наследствен­ности и ее механизмов. Хотя успехи микроскопии позволили установить, что наследственные призна­ки передаются из поколения в поколение через сперматозоиды и яйцеклетки, оставалось неясным, каким образом мельчайшие частицы протоплазмы могут нести в себе «задатки» того огромного мно­жества признаков, из которых слагается каждый отдельный организм. Первый действительно научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866 г. опубликовал статью, заложившую основы совре­менной генетики. Мендель показал, что наследст­венные задатки не смешиваются, а передаются от родителей потомкам в виде обособлен­ных единиц. С тех пор генетика достиг­ла больших успехов в объяснении природы наслед­ственности и на уровне организма, и на уровне гена. Роль генов в развитии организма огромна. Гены характеризуют все признаки будущего организма, такие, как цвет глаз и кожи, размеры, вес и многое другое. Гены являются носителями наследственной информации, на основе которой развивается организм.

Основные принципы эволюционного учения Дарвина сводятся к следующим положением:

1.Каждый вид способен к неограниченному размножению.

2.Ограниченность жизненных ресурсов препятствует реализации потенциальной возможности беспредельного размножения. Большая часть особей гибнет в борьбе за существование и не оставляет потомства.

3.Гибель или успех в борьбе за существование носят избирательный характер. Организмы одного вида отличаются друг от друга совокупностью признаков. В природе преимущественно выживают и оставляют потомство те особи, которые имеют наиболее удачное для данных условий сочетание признаков, т.е. лучше приспособлены.

Избирательное выживание и размножение наиболее приспособленных организмов Ч. Дарвин назвал естественным отбором.

4.Под действием естественного отбора, происходящего в разных условиях, группы особей одного вида из поколения в поколение накапливают различные приспособительные признаки. Группы особей приобретают настолько существенные отличия, что превращаются в новые виды.

 

21. Теория Максвелла. Кризис в физике в конце XIX в.

 

На основе представлений об атомном ядре, электронах и квантах Н. Бор создает модель атома, разработка которой ведется соответственно периодической системе Д. И. Менделеева. Это сопровождается нарушением прежних представлений о материи и ее строении, свойствах, формах движения и типах закономерностей, о пространстве и времени. Это привело к кризису физики и всего естествознания в конце XIX в.

Максвелл создал единую теорию электромагнит­ного поля. Электромагнитное поле — это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии. Дж. Максвелл высказал предположение, что любое перемен­ное электрическое поле, возникающее между движущимися электрическими зарядами, порождает магнитное, а перемен­ное магнитное поле возбуждает электрическое. Таким обра­зом, источником электрического поля могут быть неподвиж­ные электрические заряды или изменяющиеся магнитные поля, а источником магнитного поля — движущиеся электри­ческие заряды или переменные электрические поля. Концепция Дж. Максвелла позволила сделать предположение о существовании переменного электромагнитного поля, которое распространяется в пространстве с конечной скоростью. Было установлено, что скорость распространения электромагнитного взаимодействия равна скорости света в вакууме— 300 000 км/с. Оказалось, что свет — это электромагнитные волны определенной длины. Таким образом, теория Дж. Максвелла -теоретически обосновала родство электромагнитных и оптических явлений, предположение о котором высказывалось ранее. На рубеже XIX—XX вв. в физике произошел кризис, который был связан с невозможностью объяснить новые эмпирические данные с помощью законов и принципов, сформулированных в рамках механистической парадигмы.

 

22. Нобелевские премии и Нобелевские лауреаты

 

Нобелевские премии, ежегодные международные премии, названные в честь их учредителя, шведского инженера-химика, изобретателя и промышленника Альфреда Бернхарда Нобеля. Согласно завещанию Нобеля, оставшийся после его смерти капитал составил Нобелевский фонд (первоначально свыше 31 млн. шведских крон); эти средства были помещены в акции, облигации и займы, доход от которых ежегодно делится на 5 равных частей и присуждается в форме Н. п. за работы в области физики, химии, физиологии или медицины, литературы, а также за деятельность по укреплению мира. Н. п. состоит из золотой медали с изображением А. Нобеля и соответствующей надписью, диплома и чека на установленную денежную сумму, размер которой зависит от прибылей Нобелевского фонда (как правило, от 30 до 70 тыс. долларов). Н. п. присуждаются кандидатам независимо от их расы, национальности, пола и вероисповедания за самые новейшие достижения в упомянутых областях и за более ранние работы, если их значение стало очевидным позднее. Все премии, кроме премии мира, могут присуждаться только индивидуально (т. е. отдельным лицам) и только один раз. В виде исключения Н. п. была присуждена дважды М. Склодовской-Кюри (в 1903 и в 1911), Л. Полингу (в 1954 и 1962) и Дж. Бардину (в 1956 и 1972). Как правило, посмертно Н. п. не присуждаются. Первые Н. п. были присуждены в 1901; в 1901-3 в общей сложности было присуждено 311 Н. п. Среди лауреатов Н. п. выдающиеся учёные: в области физики - В. Рентген (1901), М. Планк (1918), А. Эйнштейн (1921), Н. Бор (1922); в области химии - Э.Резерфорд (1908), Ф.Гриньяр (1912), И. Ленгмюр (1932); в области физиологии или медицины - И. П. Павлов (1904), P. Кох (1905), И. И. Мечников (1908). Среди лауреатов Н. п. по литературе: P. Роллан (1915), Б. Шоу (1925), Т. Манн (1929), И. А. Бунин (1933), Э. Хемингуэй (1954); среди лауреатов Н. п. мира: Ф. Нансен (1922), А. Швейцер (1952), М. Лютер Кинг (1964).

 

Солнечная система

 

Солнечная система представляет собой группу планет, их спутников, множество астероидов и метеоритных тел. Все пла­неты Солнечной системы обращаются вокруг Солнца в одном направлении и почти в одной плоскости. Солнце представляет собой звезду среднего размера, его радиус около 700 тыс. км. Возраст Солнца оценивается примерно в 5 млрд лет. Считается, что звезды первого поколения имеют воз­раст на 8—10 млрд лет больше. В Галактике существуют также молодые звезды, которым всего от 100 тыс. до 100 млн лет. Солнечная система обращается вокруг центра Галактики со скоро­стью около 220 км/с. Солнце овершает один оборот вокруг центра Галактики за 250 млн лет. Этот период называют галак­тическим годом. Источником солнечной энергии являются термоядерные реакции превращения водорода в гелий, которые происходят в недрах. В Солнечной системе насчитывают девять планет, которые расположены в следующем порядке от Солнца: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Между Марсом и Юпитером находится кольцо астерои­дов, которые также движутся вокруг Солнца. Размеры планет значительно меньше Солнца. Все пла­неты Солнечной системы, а также их спутники светят отражен­ным светом Солнца, именно поэтому они могут наблюдаться в телескопы. Считается, что все планеты Солнечной системы возникли почти одновременно примерно 4, 6 млрд лет назад. Исчерпывающей и во всех смыслах удовлетворительной теории образования Солнечной системы пока не создано, во всех моделях существуют неясности и проти­воречия, которые требуют разрешения. Все планеты Солнечной системы можно разделить на две группы: планеты-гиганты (Юпитер, Сатурн, Уран, Нептун) и планеты земного типа (Меркурий, Венера, Земля, Марс, Плу­тон). Поверхность планет формируется под действием двух типов факторов: эндогенных и экзогенных. Эн­догенные факторы — это процессы в ядре планеты, которые ме­няют ее внешний облик: перемещения участков коры, вулкани­ческие извержения, горообразование и т.п. Экзогенные факторы связаны с внешними воздействиями: химические реакции при соприкосновении с атмосферой, изменения под действием ветра и осадков, падение метеоритов. К особым космическим объектам относятся кометы. Кометы представляют собой небольшие тела диаметром от 5 до 10 км, со­стоящие из водяного льда с вкраплениями льдов летучих соеди­нений. Согласно современным данным, кометы являются побоч­ным продуктом формирования планет-гигантов. Основная масса кометы сосредоточена в ее ядре. Под воздействием космического излучения из ядра кометы выделяются газы, образующие голову и хвост кометы, который может достигать несколько миллионов километров в длину. Кометы живут сравнительно недолго: от не­скольких столетий до нескольких тысячелетий.

 

Звезды, их эволюция

 

Звезды находятся в плазменном состоянии. Они разогреты до миллионов градусов. Внутри звезд происходит термоядерная реакция. Зыезды-это фабрики элементов. В звездах действует гравитация и термоядерная реакции. Пока эти процессы уравновешены-звезда живет. Звезды содержат 99% всей вселенной, их количество – 10в 22 степени. Температура звезд достигает миллиарда градусов. Яркость некоторых звезд достигает миллиона солнц. Плотность некоторых звезд достигает 100 млн. тонн на см3. Ближайшая после солнца звезд-Альфа-центавра, до нее 3 световых года. Звезды образуются из космического вещества в ре­зультате его конденсации под действием гравитационных, маг­нитных и других сил. Под влиянием сил всемирного тяготения из газового облака образуется плотный шар — протозвезда. Преобразование протозвезды в звезду растягивается на миллионы лет, что сравнительно немного по космическим мер­кам. Молодые звезды (около 100 тыс. лет) существуют за счет энергии гравитационного сжатия, которая разогревает цент­ральную область звезды до температуры порядка 10-15 млн С и «запускает» термоядерную реакцию преобразования водоро­да в гелий. Именно термоядерная энергия является источником собственного свечения звезд. В результате преобразования водо­рода в гелий в центральной зоне образуется гелиевое ядро. Кро­ме этого в процессе ядерных реакций возникают и другие хими­ческие элементы. На той стадии, когда ядерные реакции уже не могут поддерживать устойчивость звезды, ее гелиевое ядро на­чинает сжиматься. При этом внутренняя температура звезды увеличивается, а периферийная зона, или внешняя оболочка, сначала расширяется, а затем выбрасывается в космическое пространство. Звезда превращается в красный ги­гант. В процессе дальнейшего охлаждения, если звезда имела не­большую массу, она ревращается в белого карлика — стационарный космический объект с очень высокой плотностью. Белые карлики представляют собой зак­лючительный этап эволюции большинства звезд, в которых весь водород «выгорает», а ядерные реакции прекращаются. Свече­ние белого карлика происходит за счет его остывания. Тепловая энергия белого карлика продолжает иссякать, вследствие чего звезда меняет свой цвет сначала на желтый, а затем на красный. Постепенно она превращается в небольшое холодное темное тело, становится черным карликом. Если какие-то причины останавливают гравитационное сжатие, то происходит взрыв старой звезды, который сопровождается выбросом огром­ного количества вещества и энергии. Такой взрыв называют вспышкой сверхновой. Часть массы взорвавшейся сверхновой может продолжить существование в виде черной дыры. Черная дыра — область пространства, в кото­рой сосредоточены огромные массы вещества, вызывающие сильное поле тяготения. Часть массы взорвавшейся сверхновой звезды может продол­жить существование в виде нейтронной звезды, или пульсара.

 


Поделиться:



Популярное:

  1. H. Обособление права публичного и частного в эпоху Великих реформ. - Судебные уставы императора Александра II. - Закон и суд
  2. I На пути построения единой теории поля 6.1. Теорема Нетер и законы сохранения
  3. II. Возврат причины и следствия на их законные места
  4. IV. Социальная структура и политический строй старовавилонского общества (по законам Хаммурапи)
  5. S:Укажите верную характеристику предложения: Вода была теплей воздуха, и парное тепло от разгоряченных водяных туш усиливало ощущение одухотворенности природы - море казалось живым.(В.Гроссман)
  6. VI. Святое мгновение и Законы Божьи
  7. А – первый способ вязки: б – второй способ вязки
  8. А. Метод непосредственного применения законов Кирхгофа.
  9. А. ПРОЕКТ ДОГОВОРА О ПАТЕНТНЫХ ЗАКОНАХ
  10. Аналогия закона и аналогия права в гражданско-правовых отношениях.
  11. Антимонопольное законодательство (antitrust statutes)
  12. Антимонопольное законодательство и ответственность за его нарушение


Последнее изменение этой страницы: 2016-03-22; Просмотров: 1436; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.022 с.)
Главная | Случайная страница | Обратная связь