Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Географическое распространение
Все организмы в большей или меньшей степени приспособлены к своей среде. Если абиотические или биотические факторы, имеющиеся в определенном местообитании, могут обеспечить существование какого-то вида в одной географической области, то этот вид будет обнаружен в аналогичном местообитании и вдругой сходной географической области, например, в африканских саваннах и южноамериканской пампе. Однако на самом деле это не так. Распространение растений и животных на земном шаре носит прерывистый характер. Это нередко обусловлено экологическими факторами, однако данные об успешной колонизации новых местообитаний растениями и животными, интродуцированными в них человеком, позволяют думать, что в этом участвуют, наряду с экологической адаптацией, и какие-то иные факторы. Кроликов в Австралии не было, но быстрое увеличение их численности после того, как они были завезены туда человеком, указывают, что австралийские места обитания им подходят. Рациональное объяснение прерывистого распространения организмов основано на концепции, согласно которой виды возникают в какой-то данной области, а затем расселяются из нее. Степень расселения зависит от того, насколько успешно может обосноваться данный организм в новых местах, от механизма его расселения и от наличия или отсутствия естественных преград, таких как океаны, горные хребты и пустыни. Наиболее приспособлены для распространения через сушу и моря, по-видимому, споры и семена, переносимые ветром, и летающие насекомые. Все изложенное выше можно свести к следующему: 1) виды возникли в какой-то определенной области; 2) они расселялись за пределы этой области; 3) большинство видов могли расселяться только в том 4) отсутствие в какой-либо области более высокоорганизованных форм обычно указывает на то, что она отделилась от родины этих форм до возникновения последних. Ни один из приведенных выше фактов не позволяет объяснить механизм возникновения видов, однако все они указывают на то, что разные группы возникали в разное время и в разных областях. Классификация Система классификации была создана Линнеем задолго до Дарвина и Уоллеса, но тем не менее она содержит кое-какие намеки, связанные с проблемой происхождения видов и эволюции. Конечно, можно представить себе, что все виды, как ныне живущие, так и вымершие, были сотворены каждый в отдельности в какой-то отдельный момент времени или существовали всегда, однако структурное сходство между организмами, составляющее основу естественной филогенетической классификации, наводит на мысль о существовании эволюционного процесса. Черты сходства и различия между организмами можно представить как результат прогрессивной адаптации организмов в пределах каждой группы к определенным условиям среды на протяжении некоторого периода. Селекция растений и животных Одним из самых распространенных достижений человеческой цивилизации было выведение сортов растений и пород домашних животных от диких предков. Отбирая те особи, которые обладали какими-то желательными отклонениями, более крупным размером или более приятным вкусом и запахом, человек сохранял эти признаки путем искусственного разведения с помощью избирательного размножения или опыления. В результате непрерывной селекции человек создал породы домашних животных и сорта культурных растений, которыми мы располагаем сейчас. До того как стали известны работы Менделя, теоретические основы генетики и селекции растений и животных оставались неясными. Однако это не ограничивало практические усилия человека. Если перейти на генетическую терминологию, человек сохраняет гены, желательные для его целей, и элиминирует те, которые его не устраивают. Производя отбор, он использует существующую в природе изменчивость, а также возникающие время от времени случайные мутации. Недавно возникла новая форма искусственного отбора — неумышленный отбор на устойчивость к антибиотикам, пестицидам и гербицидам, которому подвергаются соответственно патогенные микроорганизмы, вредители и сорняки. Создается порочный круг: все возрастающее число химических веществ, изобретаемых для борьбы с вредными организмами, приводит к появлению новых форм устойчивости к этим веществам. Сравнительная анатомия При сравнительном изучении анатомии (морфологии) групп животных или растений становится ясно, что по ряду особенностей они в основе своей сходны. Например, у всех цветков имеются чашелистики, лепестки, тычинки, рыльце, столбик и завязь; однако каждый отдельный вид отличается от других по размерам, окраске, числу этих частей и деталям их строения. Органы, построенные по одному плану, занимающие сходное положение в организме животного, похожие по гистологическому строению и развивающиеся из одних и тех же зачатков, называют гомологичными (термин введен в 1843 году Оуэном). Специфические функции, выполняемые гомологичными структурами, могут различаться у разных организмов; их различия отражают особые способы адаптации каждого организма к его среде и образу жизни. Некоторые структуры у многих видов, по-видимому, не несут никакой функции, и их называют рудиментарными органами. Например, копчиковые позвонки у человека считают рудиментами хвоста, имевшегося у наших предков и сохранившегося у зародышей. Существование рудиментных органов было бы трудно объяснить вне связи с процессом эволюции. Адаптивная радиация Адаптивной радиацией называют развитие какой-либо гомологичной структуры у разных представителей данной группы в различных направлениях, в соответствии с выполняемыми ею различными функциями. У всех организмов, принадлежащих к определенному классу, имеется ряд диагностических признаков, при этом различия между разными видами в пределах этого класса дают им возможность вести различный образ жизни, приспособленный к определенным местообитаниям. Относительно высокая степень адаптивной радиации, наблюдаемой у насекомых, отражает высокую приспособляемость и полезность основных особенностей этой группы. Наличие у предкового организма какой-либо структуры или физической функции, которая имеется в сильно модифицированной форме у более высокоразвитых, по-видимому, родственных организмов, можно истолковать как указание на происхождение последних путем видоизменения первого; это и составляет основу эволюционной теории. Значение адаптивной радиации состоит в том, что она указывает на возможность дивергентной эволюции, основанной на модификации гомологичных структур. Сходные структуры, физиологические процессы или особенности образа жизни, наблюдаемые у организмов, явно не связанных близким филогенетическим родством, но обладающих адаптациями для выполнения одних и тех же функций, называют аналогичными. Например, глаза позвоночных и головоногих моллюсков, крылья насекомых и летучей мыши. Существование аналогичных структур говорит о возможности конвергентной эволюции. Конвергентную эволюцию можно объяснить как результат действия среды путем естественного отбора, благоприятствующего тем изменениям, которые сообщают организмам повышенную выживаемость. Сравнительная эмбриология Фон Бэр (1792-1867), изучая эмбриональное развитие у представителей разных групп позвоночных, обнаружил удивительное структурное сходство во всех этих группах, Зак.671 289 особенно на стадиях дробления, гаструляции и дифферен-цировки зарождающегося организма. Геккель (1834—1919) высказал мысль, что это сходство имеет эволюционное значение. Он сформулировал закон рекапитуляции, согласно которому «онтогенез повторяет филогенез», т. е. стадии, через которые проходит организм в процессе своего развития, повторяют эволюционную историю той группы, к которой он относится. Изучение одних только ранних зародышей любых позвоночных показывает, что определить группу, к которой они принадлежат, невозможно. Только на относительно поздних стадиях развития эмбрион начинает приобретать некоторое сходство с соответствующей взрослой формой. Изначальное сходство между эмбрионами объясняется тем, что все они, а следовательно, и классы, к которым они относятся, имели общего предка. Закон рекапитуляции, однако, не может быть принят безоговорочно, так как ни у одного из ныне живущих организмов нельзя обнаружить всех признаков его предполагаемых эволюционных предков. Но кажется вероятным, что организмы сохраняют механизмы развития, унаследованные от предков. Поэтому возможно, что на разных стадиях развития у данного организма будут черты структурного сходства с зародышами предковых форм. Последующие адаптации к иным условиям среды и образу жизни изменяют дальнейший ход развития. Как показывают наблюдения, чем ближе группы, к которым относят два данных организма на основании общих гомологических структур, тем дольше сохраняется их сходство на эмбриональных стадиях. Организмы, приспособленные к определенному образу жизни и определенному местообитанию, не типичному для крупной группы, к которой они принадлежат, менее сходны с другими членами этой группы и в процессе эмбрионального развития. Сравнительная биохимия По мере разработки более точных методов биохимического анализа эта область исследований стала источником новых данных в пользу эволюционной теории. Наличие одинаковых веществ у всех организмов указывает на возможную биохимическую гомологию, подобную морфологической гомологии на уровне органов и тканей. Большая часть сравнительно-биохимических исследований касалась первичной структуры широко распространенных белков, таких как цитохром и гемоглобин, а позднее — нуклеиновых кислот, в особенности РНК. Незначительные изменения в генетическом коде ДНК, связанные с генными мутациями, приводят к тонким изменениям в общей структуре соответствующих белков или РНК. Например, при изучении глобинов — гемоглобина и миоглобина, участвующих в переносе и накоплении кислорода, была получена степень сходства между молекулами гемоглобина у четырех видов приматов: человека, шимпанзе, гориллы и гиббона. Иммунологические исследования тоже свидетельствуют об эволюционном родстве между организмами. Если белки, содержащиеся в сыворотке крови, ввести в кровь животным, у которых этих белков нет, то они действуют как антигены, т. е. побуждают организм вырабатывать соответствующие антитела; в результате возникает реакция антиген — антитело. Эта иммунная реакция обусловлена способностью животного-реципиента распознавать присутствие в сыворотке чужеродных белков. Сравнительно-серологический метод широко используется для подтверждения филогенетических связей. Например, зоологи не могли систематизировать мечехвоста. Когда к сыворотке против антигенов мечехвоста добавляли антигены различных членистоногих, образование наибольшего количества преципитата2 вызывали антигены паукообразных. Эволюция и генетика Современная генетика — это быстро развивающаяся наука о законах наследственности и изменчивости, переживающая глубокие качественные преобразования не только в теоретической сфере, но и в области практического применения (селекция, медицинская генетика). Первое, на что надо обратить внимание — это те исторически развивающиеся изменения, которые создали современный философский фундамент теории генетики. Стоит выяснить внутренние связи между эволюционной биологией (теорией естественного отбора Дарвина) и зарождающейся генетикой. Эта связь вытекает из определенной общности предметов исследования. Так, дарвинизм изучает 10* 291 интегральное действие трех факторов эволюции — наследственности, изменчивости и естественного отбора. Предметом же генетики является природа наследственности и изменчивости. Нетрудно заметить, что они взаимообусловлены тем, что познание эволюции органического мира оказывается поверхностным и неполным, если оно проходит без учета сущности наследственности и изменчивости. Взаимообусловленность проблем теории эволюции и генетики не абсолютизирована и благодаря тому, что это единство внутренне различимо, теория эволюции и генетика выступают как относительно самостоятельные дисциплины. Теоретические обоснования умозрительного развития генетики (К. Нечели, Г. Спенсер, А. Вейсман) исторически а логически были связаны с эволюционным учением и вытекали из него. История генетики распадается на три этапа — классический (1900-1930 гг.), неоклассический (1930-1953 гг.) и синтетический (с 1953 г.). Материалистический подход в развитии генетики обеспечил создание теории гена, хромосомной теории наследственности, теории мутаций и современной молекулярной генетики. Классический этап генетики начался после переоткрытия законов Менделя. В своей работе 1865 году Мендель, анализируя потомство, полученное от сортов гороха, обладающих контрастно отличающимися признаками, открыл новый мир явлений. Его работа объединила биологический и математический анализ. Ему удалось создать логическую модель наследственности и дать формулировку законов наследственности. Исходя из этого, Мендель основал теорию гена. Он выделил самое существенное свойство генов — дискретность — и сформулировал принципы независимости комбинирования генов при скрещивании. В течение первого десятилетия XX века генетика переживала сложный этап своего развития. Теория генов утверждалась на основе громадного числа опытов с растениями, животными, микроорганизмами, а также при наблюдениях за наследственностью человека. Теория гена стала развиваться, признавая всеобщность генной организации наследственности для всех органических форм. Заслуга в этом вопросе принадлежит английскому ученому В. Бэт-сону (1861—1926), который показал, что менделевские за- коны наследственности свойственны не только растениям, но и животным, и установил явление взаимодействия генов при развитии особи. Исключительно важным было обоснование учения о фенотипе и генотипе организмов, которое положило начало рассмотрению «явления» и «сущности» в проблемах генетики. Работы датского ученого В. Иогансена (1857-1927) показали действие естественного отбора как фактора, преобразующего генотип на основе наследственной изменчивости при формирующей роли среды. Развитие генетики этого периода оказало серьезное влияние на селекцию, и в первое десятилетие XX века началась коренная перестройка методов селекции. Селекция переходит на аналитический уровень путем выделения из популяции генотипически ценных линий. Сформулированные выше принципы, а именно: 1) всеобщность генной организации; 2) различия между генотипом и фенотипом; 3) соединение генетики и селекции имели важнейшее зна 4. Единство и многообразие органического мира Еще на заре развития человеческой культуры людей поражала не только целесообразность строения отдельных живых существ, но и тот «порядок», который существует в живой природе в целом. Уже в древнейших индийских, египетских, китайских источниках и особенно в античной философии можно найти много интересных мыслей о взаимосвязи между животными и растениями, о единстве и целостности органического мира и его закономерном взаимодействии с органической природой. В истории биологии видное место занимает борьба материалистического толкования единства, целостности и многообразия живой природы с идеалистическими представлениями о божественном творении животных и растений, о гармонии, приданной миру творцом. С развитием науки ма- териалистические представления о единстве и многообразии живых существ все более конкретизировались и углублялись. Важную роль в этом сыграло изучение великого множества органических форм, населяющих Землю. Многообразие органического мира не ограничивается числом различных видов. Виды, в свою очередь, состоят из молодых и взрослых индивидуумов, многие — из самцов и самок, у некоторых общественных насекомых имеются матки, трутни, рабочие и солдаты, и, наконец, у большинства видов есть разновидности, географические расы и экологические формы. Для них характерны определенные строения и образ жизни. При всем многообразии органический мир — не что-то разрозненное и хаотичное. Напротив, он представляет собой единое целое. Единство живой природы, как и мира в целом, выражается в ее материальности. Все виды животных и растений представляют собой различные формы существования живой материи. Как бы ни отличались друг от друга отдельные виды животных, растений и микроорганизмов, всем им присуще определенное биохимическое единство, выражающееся в общности химического состава (белков, углеводов, жиров, ферментных и гормональных систем и др.) и близости типов реакций, лежащих в основе процессов ассимиляции и диссимиляции. Одним из выражений такой близости служит, например, сходство химического состава растительного пигмента хлорофилла с животными кровяными пигментами — гемоглобинами и гемо-цианинами, обеспечивающими дыхание. Близки химически ферменты растений и животных, и одинакова общая роль белков и нуклеиновых кислот; у всех животных, от простейших до человека, основные ферменты сходны. Есть и много других признаков удивительной биохимической общности всех отделов органического мира. В то же время имеются и специфические особенности биохимизма, отличающие животных от растений, бактерии от вирусов, а порой даже одну разновидность от другой. Сходность основных биохимических и физиологических особенностей животных, растений и микроорганизмов дополняется едиными чертами их строения и особенно тем, что клетка является основой структуры всех организмов. Существенным моментом, характеризующим единство органического мира, является наличие некоторых об- щих законов, по которым живут и развиваются все виды животных и растений. Таков закон единства живого тела и условий жизни, закон естественного отбора, закон взаимосвязи индивидуального и исторического развития организмов и т. д. Органический мир представляет собой единое целое, но в то же время он дискретен, т. е. состоит из отдельно существующих частей. Эти части соподчинены и образуют целостную систему, каждая часть обладает самостоятельностью, т. е. в определенных отношениях является и целым. Обладая известной автономией, части входят в состав более крупных структурных единиц, образуя разные ступени организации — от клетки до органического мира как целого. Как и всякое вещество, живая материя построена из молекул и атомов. Их взаимодействие, обусловливающее обмен веществ или проявление жизни на молекулярном уровне, изучают биохимия и биофизика. Следующей по величине частью живого являются клетки, образующие ткани и органы. Отличаясь высокой степенью интеграции частей, организмы обладают неизмеримо большей автономностью по отношению друг к другу, нежели составляющие их органы и части. Но автономность организмов (особей, индивидуумов) тоже относительна, они существуют лишь как составные части популяций. Популяции представляют собой совокупности свободно скрещивающихся особей одного вида, занимающих определенные территории — биотопы. Совокупность таких территориальных популяций составляет вид, распространенный на определенной части земной поверхности, к условиям которой он приспособился. Почти каждый вид состоит из различающихся по строению, но в то же время кровнородственных групп индивидуумов; у многих животных личинки не только отличаются по внешнему виду, строению и физиологии, но и живут в других местах либо питаются иной пищей и имеют многие другие особенности. Также отличаются самцы и самки, а у многих видов насекомых, паразитических червей и других известны пищевые расы, живущие за счет разных кормов или по-разному размножающиеся, например, озимые и яровые расы рыб. Вид, таким образом, представляет не простое собрание одинаковых индивидуумов, а сложную систему группировок, соподчиненных, тесно связанных друг с другом и тем самым поддерживающих существование друг друга. Объединение разнородных индивидуумов в популяции, а различных популяций в виды создает много преимуществ в борьбе за существование и обеспечивает более активные отношения вида со средой, поскольку здесь возникают более активные сложные формы групповой жизнедеятельности. Морфологическое разнообразие внутри вида, существование географических рас (подвидов) и биологических форм расширяют использование видом среды и имеют важное значение для успеха его борьбы с другими видами. Изучением видов заняты систематика, экология, палеонтология, биогеография и популяционная генетика. Наконец, популяции разных видов образуют сообщества (биоценозы), занимающие отдельные участки земной поверхности. В каждый биоценоз, где бы он ни находился, входят хлорофиллоносные растения, питающиеся ими растительноядные животные, хищники и паразиты, живущие за счет растительноядных животных, и, наконец, микроорганизмы, минерализующие трупы животных и растений. Такие сообщества представляют собой целые системы, где существование одних видов без других невозможно, так как их обмен веществ приспособлен друг к другу и одни виды используют продукты метаболизма других видов или их самих в качестве пищи. В биоценозах на основе взаимодействия составляющих их видов возникают новые формы отношений живых существ с неживой природой. Биоценозы отдельных биотопов и природных зон на основе общего круговорота веществ объединяются в единую систему — органический мир. Экология (биоценология) и биогеография изучают эти сложные системы многих видов. Все части единого органического мира отличаются не только степенью самостоятельности и автономности, но и тем, что по мере их усложнения на каждой ступени возникают качественно новые, все более сложные проявления жизни, при этом углубляется и расширяется взаимодействие живого с неорганической средой. Единство многообразной и сложно организованной живой природы выражается во взаимосвязях и взаимодействии качественно различных видов животных, растений и микроорганизмов. Эти взаимоотношения и служат основой возникновения и развития сообществ, состоящих из разных видов. Такова структура органического мира, покоящаяся на основном свойстве живой материи — обмене веществ и энергии со средой. Будучи единым целым, живая природа не представляет собой какой-то замкнутой автономной системы. Она находится в тесном единстве и взаимодействии с окружающей ее неживой природой. Тела животных и растений состоят из тех же химических элементов, в них действуют те же химические и физические законы, которые присущи неживой природе. Неживая природа не только породила живое на определенной ступени своего развития, но и является необходимым условием его существования и развития. Существование жизни обеспечивается взаимодействием каждой особи с окружающей ее абиотической и биотической средами, а также взаимоотношениями всего органического мира как целого с неживой природой. Первое исторически обусловило строение индивидуумов, их приспособленность к определенным условиям. Второе осуществляется посредством определенной организации видов и образованием сообществ различных форм животных, растений и микроорганизмов. Единство, тесная взаимосвязь организмов с окружающими абиотической и биотической средами нашли яркое выражение в трудах русского биолога К.Ф. Рулье, русского физиолога И.М. Сеченова. Углубил эти представления о единстве организмов и среды И.В. Мичурин. «Каждый организм, каждое свойство, каждый член, все внутренние и наружные части всякого организма, — писал он, — обусловлены внешней обстановкой его существования. Если организация растения такова, какова она есть, то это потому, что каждая ее подробность исполняет известную функцию, возможную и нужную только при данных условиях»3. Разнообразные формы животных, растений и микроорганизмов отличаются друг от друга величиной, формой, строением, функциями (характером жизнедеятельности), местами обитания (географическим распространением), органическим веществом, синтезируемым с помощью хлорофилла. Помимо растений это делают бактерии — хемосинтетики, использующие при синтезе энергию химических превращений. За счет растений живут другие организмы. Животные питаются готовыми органическими веществами и являются его потребителями (консументами). Наконец, значительная часть микроорганизмов (большая часть бактерий и низших грибов — актинолицетов) существует за счет мертвого органического вещества (трупов животных и растений), разлагая его и возвращая к исходному неорганическому состоянию. Поэтому их называют разрушителями (редуцентами) органического вещества. Другие микроорганизмы ведут паразитический образ жизни, существуя за счет живых растений и животных. Таким образом, животные, растения и микроорганизмы не просто сосуществуют, а живут за счет друг друга, находятся в необходимой связи, без которой их жизнь невозможна. Эти связи сложились исторически в ходе развития органического мира в результате противоречий, с одной стороны, между живой и неживой природой, с другой — между организмами, каждый из которых для своих партнеров представляет часть окружающей его среды, причем часть относительно более важную, нежели неорганическая природа. 5. Жизнь как биологический круговорот веществ Нормальное протекание жизненного процесса каждого организма требует не только поступления в организм определенных веществ и энергии, но и удаления из него продуктов обмена и рассеяния избыточной энергии во внешнюю среду. Из этого и складываются основные потребности организма, удовлетворяемые за счет других живых существ и неорганической среды. В эти потребности входят пищевые вещества (органические и минеральные), газы (кислород) и вода; для нормального хода реакций необходимы определенная температура (различная в разных случаях), активная реакция (рН), плотность, давление среды и движение ее частиц; наконец, для существования организма требуется известное пространство, на котором он находит для себя все необходимое. Растения получают основные вещества и энергию почти полностью из неорганической природы. Климат и другие физические и химические особенности среды зависят от положения участка на земной поверхности и его геологи- ческого строения, т. е. преимущественно также от неорганических факторов. Одновременно в жизни всех растений непосредственную и очень важную роль играют взаимоотношения с другими видами растений и животных, так как они воздействуют на химические процессы и на физическое состояние среды. Все организмы прямо и косвенно связаны как с неживой природой, ее климатическими, географическими и другими физическими и химическими факторами, так и со своими партнерами по сообществу. В этом многообразии отношений находит выражение взаимосвязь и взаимообусловленность абиотических и биотических факторов среды, воздействующих на всякий организм как целостная система, хотя каждый из перечисленных элементов среды в то же время самостоятелен и в определенных пределах может меняться независимо от других. Отношения разных видов со средой всегда специфичны, что и отличает виды друг от друга. Каждый вид связан с определенными элементами (факторами) среды, которые могут быть безразличными или малозначительными для его соседей — других видов. Эта специфичность является прямым следствием эволюции, происходящей по открытому Ч. Дарвином принципу расхождения (дивергенции) видов, каждый из которых имеет свою «экологическую нишу» в сообществе. Под экологической нишей понимают место, занимаемое данным видом в тех сообществах, куда он входит в качестве одного из членов. Это место определяется отношением к абиотическим условиям и связям данного вида с другими видами. Особенно важны пищевые связи. Опираясь на них, можно выделить ниши травоядных копытных (преимущественно древоядных оленей), насекомоядных птиц, хищных птиц и т. д. В результате объединения отдельных видов сложной системы — биоценоза — образуется единая структура органического мира; она обладает высокой степенью слаженности, чем и объясняется ее устойчивость. Но эти связи одновременно и противоречивы, что определяется характером отношений каждого со средой. Отношения к среде отдельно взятого вида имеют односторонне необратимый характер. Вид извлекает из среды необходимые ему вещества и энергию, но возвращает их в иной, обычно измененной и непригодной для повторного использования форме. Этим вид истощает и засоряет свою среду, не восстанавливая причиненных нарушений. И если бы результаты его деятельности не ликвидировались противоположно направленной восстановительной деятельностью других видов, его существование в скором времени стало бы невозможным. Так, растения, извлекая из почвы питательные вещества, обедняют ее, и, если бы не существовали почвенные микроорганизмы, разлагающие мертвые тела погибших растений и животных, растительность очень скоро погибла бы. Односторонний характер воздействия любого вида на окружающую среду и невозможность его непрерывного существования без восстановления другими видами использованных ресурсов объясняют неизбежность возникновения и развития жизни как общего и единого круговорота веществ в биосфере. Биосфера представляет собой те части газообразной, жидкой и твердой оболочек земного шара — атмосферы, гидросферы и литосферы, которые заселены и преобразованы живыми существами. Еще на заре жизни наметились два основных звена биогенного круговорота веществ — гетеротрофного и ав-тотрофного питания. Гетеротрофное питание означает усвоение организмами уже существующих органических веществ, а автотрофное — их синтез из веществ неживой природы. Круговорот веществ замкнулся при появлении сапрофитов, минерализующих мертвое органическое вещество и возвращающих его в исходное неорганическое состояние. Последующий рост многообразия органического мира приводил к расширению и углублению биологического круговорота веществ. В ходе эволюции не только увеличилось многообразие форм живой материи, но и росло число видов, усложнилось строение организмов. Одновременно усложнилась общая структура живого покрова земли и занимающих отдельные участки земной поверхности сообществ животных, растений и микроорганизмов. Эволюция видов была неразрывно связана с развитием их сообществ и тем самым — с усложнением и расширением их связей с неживой природой. Увеличение многообразия и усложнение структуры органического мира укрепило его целостность и единство. Основным стержнем круговорота веществ служит питание особей одних видов особями других и использование одними видами продуктов обмена других. Важнейшей формой круговорота явились возникавшие на этой основе сначала простые трехчленные, а позднее более сложные (из 5-7 звеньев) цепи питания. Они состоят из производителей органического вещества — растений, его первичных потребителей — растительноядных животных, вторичных потребителей — хищников (плотоядных) и паразитов и третичных потребителей — сапрофитов — разрушителей. Примерами таких цепей питания в степном биоценозе могут быть: 1) злаки и разнотравье — копытные — хищники — па 2) злаки и разнотравье — саранчовые — птицы и мел Отношения пищи и ее потребителей в подобных цепях важны для жизни каждого вида и определяют его основные морфофизиологические и экологические особенности, в частности, соотношения величин индивидуумов, числа особей и их массы. В грубом приближении размеры организмов растут от звена к звену, и потребитель в большинстве случаев оказывается крупнее пищи. Есть, правда, и довольно многочисленные исключения, связанные со способами добывания и использования пищи. Так, при коллективной охоте хищников они нападают и на добычу, которая крупнее их, а паразиты, как правило, мельче хищников. Увеличение размеров организмов ухудшает их двигательные способности; к тому же крупному животному необходима большая территория для существования. В противоположность размерам особей их число и биомасса (суммарный вес организмов) прогрессивно убывают от звена к звену: и масса пищи примерно в десять раз больше суммарной массы ее потребителей. Многократное убывание массы объясняется тем, что большая часть пищевых веществ расходуется не на построение тела потребителя, а на его деятельность. Возрастание размеров особей и убывание их числа и их массы ограничивают число звеньев в каждой пищевой цепи, в редких случаях превышающее пять-шесть. Зависимость числа и биомассы других обусловливает структу- ру сообществ, реагирующих на изменение среды как целостная совокупность взаимосвязанных видов. Эти же связи служат механизмами регуляции, обеспечивающими известную устойчивость сообществ. Все это осуществляется главным образом, на базе биологического круговорота веществ, хотя пищевые связи дополняются очень важными для жизни пространственными отношениями, регулируемыми многочисленными внутривидовыми и межвидовыми приспособлениями. Описанные отношения и связи разных видов служат конкретными путями круговорота веществ. В каждом участке земной поверхности живут свои сообщества, состоящие из многих, иногда параллельных, иногда соединяющихся или пересекающихся цепей питания. Они-то и представляют те отдельные ручьи и реки, из которых состоит общий поток биологического круговорота веществ и энергии. Но эти отдельные ручьи и реки соединены многочисленными рукавами — протоками, так как некоторые виды животных, особенно подвижные хищники, одновременно являются участниками нескольких параллельных цепей питания и могут входить в несколько сообществ. Так, местные популяции разных видов, образующие сообщества отдельных биотопов, объединяются в биоценозы более крупного ранга — сообщества географических районов, природных зон, континентов и морей, и, наконец, в единый органический мир. С ростом многообразия и усложнением органического мира в круговорот вовлекается все больше веществ; среда все полнее и глубже осваивается организмами. Одновременно часть вовлеченных веществ выходит из круговорота в виде инертных отложений (известняки, сапропели, торф и т. п.). Отношения животных, растений и микроорганизмов, развивающиеся на базе биологического круговорота веществ, имеют столь же длительную историю, как и эволюция этих групп; они регулируются возникшими в ходе эволюции взаимными приспособлениями. Именно этим объясняется известный порядок и слаженность в биоценозах. Но эти отношения и противоречивы. Отдельные виды животных, растений или микроорганизмов связаны друг с другом пищевыми, пространственными и другими отношениями; во многих случаях они не могут существовать друг без друга. В то же время каждый вид обладает определенной самостоятельностью. Популярное:
|
Последнее изменение этой страницы: 2016-03-22; Просмотров: 1287; Нарушение авторского права страницы